Hierarchy Problem Othersence

SIMP

Hitoshi Murayama (Berkeley, Kavli IPMU) Niels Bohr Institute, Aug 13, 2018

+Eric Kuflik, Yonit Hochberg Katelin Schutz, Robert McGehee Chien-I Chang

Anniversary Symposium wah Ceremonial Session

Oct 16 (Mon) - 18 (Wed), 2017 Kashiwanoha Conference Center Kavli IPMU

Kavli IPMU is there to stay!

Wither WIMP?

DM

DM

$\frac{n_{\rm DM}}{s} = 4.4 \times 10^{-2}$ $MODM = 4.4 \times 10^{-2}$ $MODM = 4.4 \times 10^{-2}$ $SM = 4.4 \times 10^{-2}$ $SM = 4.4 \times 10^{-2}$

 $m \approx 300 \text{ GeV}$ Relevant to hierarchy problem? $m_{
m DM}$

"weak" coupling "weak" mass scale

SM

correct abundance

Miracle²

CMS Exotica Physics Group Summary - ICHEP, 2016

dielectrons, A+ LLIM dielectrons, A- LLIM single e, A HnCM Compositeness single μ , Λ HnCM inclusive jets, A+ inclusive jets, A-0 1 2 3 4 5 6 7 8 9 10111213141516171819 TeV

13 TeV coloron(jj) x2

RIP

WIMP

4 TeV

Te\

TeV

6 TeV

recent thinking

- dark matter definitely exists
 - hierarchy problem may be optional?
- need to explain dark matter on its own
- perhaps we should decouple these two
- do we really need big ideas like SUSY?
- perhaps we can solve it with ideas more familiar to us?

What do we know about Dark Matter?

I.8 sq. deg.870M pixels

Best limit on Black Hole dark matter

Niikura, Takada et al. arXiv: 1701.02151

Reading out every 2 minutes of HSC obs. of M31 to look for microlensing (just one night in Nov, 2015)

Mass Limits "Uncertainty Principle"

- Clumps to form structure
- imagine $V = G_N \frac{Mm}{r}$ "Bohr radius": $r_B = \frac{\hbar^2}{G_N Mm^2}$
- too small $m \Rightarrow$ won't "fit" in a galaxy!
- $m > 10^{-22} \text{ eV}$ "uncertainty principle" bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

Seminar in Berkeley Strongly Interacting Massive Particle (SIMP)

カ

Yonit Hochberg

e

THE SIMP MIRACLE

A coincidence of scales

$$m_{\rm dm} \simeq \alpha \left(T_{\rm eq}^2 M_{\rm pl} / x_F^4 \right)^{\frac{1}{3}}$$

 $m_{\rm dm} \simeq \alpha \times 100 \ {\rm MeV}$

- If $\alpha \sim 1$, the strong scale emerges $(x_F \sim 20)$
- Like the WIMP, no input of scales or particle physics Eric Kuflik

Strongly interacting sub-GeV dark matter But not UV complete; coupling blows up very quickly

Dark Pions

- Not only the mass scale is similar to QCD
- dynamics itself can be QCD! Miracle³
- DM = pions = $q\bar{q}$

• e.g. $SU(4)/Sp(4) = S^5$ $\mathcal{L}_{chiral} = \frac{1}{16f_{\pi}^2} \operatorname{Tr}\partial^{\mu}U^{\dagger}\partial_{\mu}U$

+HM arXiv:1411.3727

 $\mathcal{L}_{\rm WZW} = \frac{8N_c}{15\pi^2 f_\pi^5} \epsilon_{abcde} \epsilon^{\mu\nu\rho\sigma} \pi^a \partial_\mu \pi^b \partial_\nu \pi^c \partial_\rho \pi^d \partial_\sigma \pi^e + O(\pi^7) \pi^5 G_{\mu\nu} \pi^c \partial_\mu \pi^c \partial$

also, non-abelian vector bosons (vector SIMP) +S-M Choi, HM Lee, Y. Mambrini, M. Pierre, arXiv:1707.01434

- $\pi_5(SU(N_f)/SO(N_f)) = \mathbb{Z} (N_f \ge 3)$
- $SO(N_c)$ gauge theory
- $\pi_5(SU(2N_f)/Sp(N_f)) = \mathbb{Z} (N_f \ge 2)$
- $Sp(N_c)$ gauge theory
- $\pi_5(SU(N_f)) = \mathbb{Z} (N_f \ge 3)$
- $SU(N_c)$ gauge theory
- $\mathcal{L}_{WZ} \sim \epsilon_{abcde} \epsilon^{\mu\nu\rho\sigma} \pi^a \partial_{\mu} \pi^b \partial_{\nu} \pi^c \partial_{\rho} \pi^d \partial_{\sigma} \pi^e$

Witten

SIMPlest Miracle $\begin{pmatrix} u_1 \\ d_1 \end{pmatrix} \begin{pmatrix} u_2 \\ d_2 \end{pmatrix} \begin{pmatrix} u_3 \\ d_3 \end{pmatrix} \begin{pmatrix} u_4 \\ d_4 \end{pmatrix}$ (2) gauge theory with four doublets

- SU(2) gauge theory with four doublets
- SU(4)=SO(6) flavor symmetry
- $\langle q^i q^j \rangle \neq 0$ breaks it to Sp(2)=SO(5)
- coset space $SO(6)/SO(5)=S^5$, 5 pions
- $\pi_5(S^5) = \mathbb{Z} \Rightarrow \text{Wess-Zumino term}$
- $\mathcal{L}_{WZ} = \epsilon_{abcde} \epsilon^{\mu\nu\rho\sigma} \pi^a \partial_{\mu} \pi^b \partial_{\nu} \pi^c \partial_{\rho} \pi^d \partial_{\sigma} \pi^e$

LAGRANGIANS

Quark theory

$$\mathcal{L}_{\text{quark}} = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu a} + \bar{q}_{i} i D q_{i} - \frac{1}{2} m_{Q} J^{ij} q_{i} q_{j} + h.c.$$

Sigma theory

$$\mathcal{L}_{\text{Sigma}} = \frac{f_{\pi}^{2}}{16} \text{Tr} \partial_{\mu} \Sigma \ \partial^{\mu} \Sigma^{\dagger} - \frac{1}{2} m_{Q} \mu^{3} \text{Tr} J \Sigma + h.c. - \frac{iN_{c}}{240\pi^{2}} \int \text{Tr}(\Sigma^{\dagger} d\Sigma)^{5}$$

$$\boxed{\begin{array}{c} \textcircled{0}}\\ \textcircled{0}\\ \textcircled{0}\\ \cancel{0}\\ \cancel{0}$$

Solid curves: solution to Boltzmann eq. Dashed curves: along that solution $\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3/10}$ $\frac{\sigma_{\text{scatter}}}{m_{\pi}} \propto m_{\pi}^{-9/5}$

Solid curves: solution to Boltzmann eq. Dashed curves: along that solution $\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3/10}$ $\frac{\sigma_{\text{scatter}}}{m_{\pi}} \propto m_{\pi}^{-9/5}$

Solid curves: solution to Boltzmann eq. Dashed curves: along that solution $\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3/10}$ $\frac{\sigma_{\text{scatter}}}{m_{\pi}} \propto m_{\pi}^{-9/5}$

self interaction

- σ/m ~ cm²/g
 ~10⁻²⁴cm² / 300MeV
- flattens the cusps in NFW profile
- suppresses substructur
- actually desirable for dwarf galaxies?

SIDM Spergel & Steinhardt (2000) now complete theory

Abell 3827

Peter Taylor et al, arXiv:1701.04412

velocity dependence?

- cluster data prefer smaller σ ?
- near constant $\langle \sigma v \rangle$?
- Sommerfeld effect (S.Tulin, H.-B.Yu, and K.M. Zurek, arXiv:1302.3898)
 - requires light mediator
- near-threshold resonance can "fit" the data
- *i.e.*, $\pi\pi \rightarrow \sigma \rightarrow \pi\pi$
 - (Xiaoyong Chu, Camilo Garcia-Cely, Yonit Hochberg, Eric Kuik, HM)

 $\mathcal{L} = m_R g R D M^2$.

M. Kaplinghat, S. Tulin, and H.-B. Yu, arXiv:1508.03339.

PFS subsystems distribution

PFS collaboration

Jet Propulsion Laboratory California Institute of Technology

Caltech

Max-Planck-Institut für Astrophysik

Max-Planck-Institut für extraterrestrische Physik

JOHNS HOPKINS **UNIVERSITY**

(14)

0

-

(~)

PFS pointings for MW satellites HSC imaging data are available for all samples ~

Interactions with SM

if totally decoupled

 3→2 annihilations without heat exchange is excluded by structure formation, [de Laix, Scherrer and Schaefer, Astrophys. J. 452, 495 (1995)]

communication

- 3 to 2 annihilation
- excess entropy must be transferred to e[±], γ
- need communication at some level
- leads to experimental signal

vector portal arXiv:1512.07917

$$\frac{\epsilon_{\gamma}}{2}F_{\mu\nu}F_D^{\mu\nu}$$

also axion portal: +Katelin Schutz, Robert McGehee, arXiv:1806.10139

e⁺ e⁻ colliders

Back to Hierarchy Problem

hierarchy problem!

LHC excludes mostly colored particles

CMS Exotica Physics Group Summary – ICHEP, 2016

Twin Higgs

□ Take two mirror copies of the SM:

 $(SM_A) \times (SM_B)$ Z_2 Z_2 $Z_$

□ Assume Higgs potential has an SU(4) or SO(8) global symmetry in the UV.
 V = -μ²(|H_{SM}|² + |H_{twin}|²) + λ(|H_{SM}|² + |H_{twin}|²)² + κ|H_{SM}|²|H_{twin}|²
 □ Take a small hierarchy of Higgs vevs:

 $\langle \mathcal{H}_A \rangle = v$ $\langle \mathcal{H}_B \rangle = f$ with v < f. SO(8)/SO(7): 7 NGBs 3: eaten by SU(2)_{twin} *Chacko, Goh, RH* (2005) 4: Standard Model Higgs Jarnik, JHU workshop 2017 in Budapest

Twin Higgs

- □ All NP within LHC reach is SM neutral.
- PNGB Higgs, cancelation ...

Roni Harnik and Zackaria Chacko, JHU workshop 2017 in Budapest

Twin spectrum

arXiv:1805.09345

- light fermion spectrum not important to hierarchy because of small Yukawas
- Planck: $\Delta N_{eff} < 0.29$
 - assume leptons heavy
 - no N_{eff} problem
- assume exact SU(2)
 - (u,d) vs (c,s)
- lightest pions are triplet in SU(2)_{d,s}

• stable

mesons

- assume exact SU(2)
 - (u,d) vs (c,s)
 - approximate SU(4)
 - $m_{u,c}=m_{d,s}(I+\Delta)$
 - I5 mesons
- lightest pions are triplet in SU(2)_{d,s}
 - stable
- triplet in SU(2)_{u,c} also practically stable
- 8 charged ones stable
- only one unstable η

$\mod M$	particle content	$m_M^2 \propto$	m_M
$ heta^0({f 3},{f 1})$	$u'\bar{c}', c'\bar{u}', \frac{1}{\sqrt{2}}(u'\bar{u}' - c'\bar{c}')$	$2m_{u'}$	$m_{\pi}(1+\Delta)$
$D^+(2,2)$	$u'ar{d}',c'ar{d}',u'ar{s}',c'ar{s}'$	$m_{u'} + m_{d'}$	$m_{\pi}(1+\frac{\Delta}{2})$
$D^{-}(2,2)$	$d'ar{u}',s'ar{u}',d'ar{c}',s'ar{c}'$	$m_{u'} + m_{d'}$	$m_{\pi}(1+\frac{\Delta}{2})$
$\eta^{0}(1,1)$	$\left \frac{1}{2} (d'\bar{d}' + s'\bar{s}' - u'\bar{u}' - c'\bar{c}') \right $	$m_{u'} + m_{d'}$	$m_{\pi}(1+\frac{\Delta}{2})$
$\pi^{0}(1,3)$	$\left[\overline{d'}\overline{s'}, s'\overline{d'}, \frac{1}{\sqrt{2}}(d'\overline{d'} - s'\overline{s'}) \right]$	$2m_{d'}$	m_{π}

TABLE I. Decomposition of the meson $SU(4)_f$ 15-plet under $SU(2)_U \times SU(2)_D \times U(1)_{\rm EM}$. The third column shows the linear combination of quark masses that determines the meson masses-squared. From top to bottom, the meson masses go from heaviest to lightest, assuming $m_{d'} = m_{s'} < m_{u'} = m_{c'} = m_{d',s'}(1 + \Delta)$.

FIG. 2. A visual representation of the meson spectrum.

$\eta\eta \rightarrow \pi\pi$

- η → μ⁺μ⁻ or 2(e⁺e⁻)
- τ_η~10⁵ sec
- I. $\pi\pi \rightarrow \eta\eta$ kinematically not possible
- 2. lose η by $\eta\eta \rightarrow \pi\pi$
- 3. η decays before BBN limit
- $\pi\pi\rightarrow\eta\eta\rightarrow$ SM shouldn't happen in halo today
- can easily be avoided $\Delta > v_{halo}^2 \sim 10^{-6}$

invisible Higgs @ ILC

Keisuke Fujii

BR($H\rightarrow$ invisible) ~ (v/f)² down to 0.3%

Swampland

 $w = -1 + \frac{2c^2}{3 \perp c^2}$

String Landscape $|\nabla V| > cV$

(meta)-stable positive vacuum energy

Swampland

Obied, Ooguri, Spodyneiko, Vafa

"Quintessence"

- Accelerated Expansion happened before
 Inflation
- Is current acceleration also by scalar field?
 - very difficult to keep flat potential for Q
 - SUSY broken > TeV
 - at the least, $m_{3/2} > (\text{TeV}^2/M_{Pl}) \sim \text{eV}$
 - *i.e.*, vector mediation (Hook, HM)
 - more typically $m_{3/2} > \text{TeV}$
 - but we need $m_Q \sim H_0 \sim 10^{-33} \text{ eV}$

shift symmetry

- incorporate into supergravity
- shift symmetry (monodromy) in Kähler
 - $Q \rightarrow Q + i \alpha$
 - $K(Q,Q^*) = K(Q+Q^*) \sim (Q+Q^*)^2/2$
- $V = e^{K} ((K_{i}W + W_{i})^{*} K_{\overline{i}}^{-1j} (K_{j}W + W_{j}) 3|W|^{2})$ = $|W_{Q}|^{2} - 3m_{3/2} (W(Q) + W^{*}(Q))$
 - need $m_{3/2}W(Q) \sim m_{3/2}\Lambda^3 \sim H_0^2$
 - any potential can be lifted to supergravity
 - also radiatively stable $\delta K \sim m_{3/2}^2 \Lambda^6$
 - no fifth force Chien-I Chiang, HM, arXiv:1808.02279

axion-like example

- incorporate into supergravity
- shift symmetry (monodromy) in Kähler, W
 - $Q \rightarrow Q + i \alpha$
 - $K(Q,Q^*) = K(Q+Q^*) \sim (Q+Q^*)^2/2$
- $V = e^{K} ((K_{i}W + W_{i})^{*} K_{\overline{i}}^{-1j} (K_{j}W + W_{j}) 3|W|^{2})$ = $|W_{Q}|^{2} - 3m_{3/2} (W(Q) + W^{*}(Q))$
 - shift symmetry = $U(I)_R$ symmetry
 - $W(Q) = \Lambda^3 e^{-Q}, V = 3m_{3/2}\Lambda^3 \cos(\operatorname{Im} Q)$
 - symmetry spontaneously broken by $m_{3/2}$

shift symmetry

- incorporate into supergravity
- shift symmetry (monodromy) in Kähler
 - $Q \rightarrow Q + i \alpha$
 - $K(Q,Q^*) = K(Q+Q^*) \sim (Q+Q^*)^2/2$
- $V = e^{K} ((K_{i}W + W_{i})^{*} K_{\overline{i}}^{-1j} (K_{j}W + W_{j}) 3|W|^{2})$ = $|W_{Q}|^{2} - 3m_{3/2} (W(Q) + W^{*}(Q))$
 - need $m_{3/2}W(Q) \sim m_{3/2}\Lambda^3 \sim H_0^2$
 - any potential can be lifted to supergravity
 - also radiatively stable $\delta m_Q^2 \sim m_{3/2}^4 \Lambda^6$
 - no fifth force

Chien-I Chiang, HM

Baryon Acoustic Oscillations

ELGs [OII] > 8.5 σ , 15 min exposure

COSMOLOGY H(z) with BAO

http://pfs.ipmu.jp/intro.html

Conclusion

A C PLIFORM C PLIFORM

- We still have no idea what dark matter is
- WIMP still the main paradigm
 - but no sign of it
- SIMP can solve problems with DM profile
 - core/cusp, missing satellites
 - very rich phenomenology
 - Exciting dark spectroscopy
 - Can also address the hierarchy problem
- cosmological constant in swampland?
 - Can lift any quintessence potential to supergravity
 - renewed interest in observation