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Motivation: (1) “Gravity as the square of gauge
theory”

Does the color kinematics “duality” (Bern, Carrasco, Johanson 2008) relate classical
solutions in YM and GR? This was first raised by:

Monteiro, O’Connell,White (2014)

Luna, Monteiro, O’Connell, White (2015)
Luna, Monteiro, Nicholson, O’Connell,White (2016)

who pointed out connections between classical YM, GR solutions:

(eg: coulomb — Schwarzschild, Kerr, plane waves,...) “Double copy”

But does this Kerr-Schild double copy also appear in less symmetric configurations, such as radiation
from black holes in bound orbits?



Motivation: (ll) Gravitational wave sources

Gravitational dynamics of radiating classical BH (or NS) binary systems in the non-relativistic limit
is experimentally relevant (LIGO/VIRGO, LISA,...)

\. .\

Experiments will be sensitive to at least U6 corrections beyond Newtonian gravity (Thorne et al
1994). Numerical GR results also motivate computing higher order corrections.



For this system, the radiation field measured by observers at infinity
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encodes all the relevant physical info about this system (masses,spins, multipole moments,QNM
frequencies,...). In perturbation theory, it is most conveniently computed by recasting Einstein’s

equations in the form (eg VWeinberg 1972)
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2mpl k2 i 2 |
N _ (deDonder gauge)
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The radiation field at infinity has a simple relation to the pseudo-tensor evaluated on-shell

(Weinberg 1972)
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In practice computing higher order terms in perturbation theory (’U << 1) is difficult for two
reasons:

Many terms in the expansion of T"“/ (x) at high orders in h,ul/

Many physically relevant scales

Gravitational radius: rg = QGNM
Physical radius: TS(: g for BH)
Tg~Tsg >T > A
Orbital scale: T
v Radiation wavelength A\

all correlated to the perturbative expansion parameter

ro~ Ty v A~rfv~r, /v



Some of these challenges can be ameliorated by employing tools borrowed from the analysis
of @ bound states in QCD (WG+Rothstein 2005):

Many terms in the expansion of T"“/ (aj) at high orders in h/ﬂ/

===l  Organize the expansion in terms of Feynman diagrams

Many physically relevant scales

—~ Treat each scale separately, by constructing
a tower of gravity Effective Field Theories

__ 1.potential rad
R = huv + hW

The focus of this talk is the Feynman diagram expansion.



The types of Feynman diagrams that are relevant are of the same type as in Duff’s (I973)

perturbative construction of the Schwarzschild solution:
(NOTA

PROPAGATO R!)
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Same type of diagrams in the two-body sector:
(WG+Ross,2010)
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see Foffa et al, 1612.00482

State of the art is 4PN order
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Q: Is there a more efficient way, based on modern
" amplitude methods, eg color kinematics duality (BCJ) to
organize the perturbative expansion?

(Other amplitude based approaches to perturbative binary dynamics:
Neill and Rothstein (201 3)
Bjerrum-Bohr, Donoghue,Vanhove (201 3)
Cachazo and Guevara (2017)
Bjerrum-Bohr, Damgaard, Festuccia, Plant,Vanhove (2018)
Cheung, Rothstein, Solon (2018))



The BCJ dOUble COPY Bern, Carrasco and Johansson (2008)

Scattering amplitudes in gauge theory and perturbative gravity obey simple “color-kinematics”
relations.

E.g., 2 — 9 gluon scattering at tree-level.  Up to overall norm, amplitude can be put into “BC]|

form”
[ b ) = ! (/%
e e N
2 4 N ) - :

— NgCg | TV Cy | TV Coy

S t U
w/ color structures ¢, = f192b fbasas ¢y = farasb pbazas Cy = fO104b fhazas
Lie alg. Jacobi identity: Cs T Ct T Cy = 0

(4-gluon vertex has been “blown up” and absorbed into $;%, U channels)
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The “kinematic structures” '’s;t,u  are polynomials in the kinematic invariants, polarizations.
They can be chosen to satisfy a relation:

“Kinematic” Jacobi id: T o -+ TV¢ -+ Ny — 0

(The decomposition is not unique due to Jacobi identities. There is a “generalized gauge
transformation”

Ne — N + SA
ng — Ny + 1A e AZM — AZM

Ny — My + UA

that preserves the BC| form of the amplitude.)



BC] noticed that by applying the color-to-kinematics “duality’” transformations:
Cs — Ng Ct — Ty Cu — Ty

the 4-gluon amplitude maps onto

.AYM _ AGR o UTUT | TLe Tt | Ty Ty
4 4 — | |
S t U

This precisely matches tree-level graviton scattering in Einstein-Hilbert gravity.



More generally, any tree level n-point amplitude in gauge theory can be put into the form

\’ (Eqg. 13.2 of Elvang+Huang,

w/ author’s permission)
(sum is over graphs with tri-linear vertices, after blowing up 4-gluon interactions).

Then the BCJ double copy amplitude, ¢; — ﬁz

- nrflj
AYM _y J9rav _ 11l
" " EZ: | | Propagators

is an n-point graviton scattering amplitude.

These BCJ relations have been established for arbitrary dimension d, and gauge group G at tree

level. (Bern et al 2010)
5

At the loop level, BC|] remains conjectural, but many non-trivial (up to/?-)igop) checks suggests that
these relations continue to hold.



In general the double copy gravitational theory is not pure GR. lts spectrum is the square of the
gauge theory one.

In d-dimensional pure Yang-Mills, the gluon maps to the gravity d.o.f’s

GZ(IC) — GM(k)g,/(k) — hMV (graviton) D B,UJ/ ((jzz'ic,)';:ifs)uge field; P ¢ (dilaton)

all of which propagate in loops. This is also expected from KLT relations in string theory.

Gauge supermultiplets, e.g.:
(N =4) SYM — (N =4) ® (N = 4) = (\ = 8) SUGRA

etc.



Classical radiation from the double copy

Does the BCJ double copy relate other observables, not just the S-matrix? Can it be used to
obtain classical perturbative solutions in gravity from (computationally simpler) solutions in YM?

In the context of radiation, evidence that the answer is “YES” was provided at lowest non-trivial
order in perturbation theory in (WG+A. Ridgway, 161 1.03493).

Check by explicit calculation on both sides of the color-kinematics correspondence and using the
results to guess the between YM and gravity solutions.



Gauge Theory Solutions

Solve the classical Yang-Mills equations coupled to classical point color charges.

D, F"(x) = gJ§ ()

By classical color charge we mean an object whose degrees of freedom are

rH (T) =wordline coordinate c (’7’) =color d.o.f in adjoint at :17(7‘)

(Sikivie and Weiss, 1978)
Current for a collection of charges

1
JH(z) = Z / drc? (T)vH(1)6%x — zo(T)) + - -

(finite size terms
and other color
moments)



The particle equations of motion follow from conservation laws. Color conservation:

D,JY=0=wv-Dc" =0

or in terms of adjoint rep.Wilson line Cg“é (7‘) — a b (T)Cb (—OO)

Wo (1) = | Pexp 4 —z’g/ dxb A, - T, b

- \ — OO -

The orbital motion is fixed by energy-momentum and gives the non-Abelian Lorentz force law:

9, (T 7wy = 0= P _ jeaomr
M( YM_|_ pp)_ =>E—gc a Vv



We find it convenient to solve the coupled equations in Lorentz gauge, in the form

~ ~

Ay =9J4 Y= TN fUCAL (O AL — FRY)
0, J" =0

The classical solution is an off shell one-point function in the presence of (self-consistent) sources:
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Our focus in this talk is on the radiation field measured by observers at r — o0 and fixed
retarded time t (i.e.“asymptotic null future infinity”’). This is related to the on-shell momentum
space current

~

JH (k) = /ddxeik'xjg(:z;)

a

w/ k* — 0. E.g,in four dimensions, the asymptotic gauge field is

lim (A%)(z) = dw

r—5 00 A7r 27T

eIk (k)
LH — (w,/g) = w(1,Z/r)

This determines all observables measured by detectorsat r — oo



Consider a collection of particles in generic time-dependent orbits:

rf{\&"% W
R/ «zoa\ o /é\ 7 e
b w”‘;\ V;f% O PP T
o5/

wh ~ O(1) wb~v K1

or

E/m ~ O(1) E/m~v? <1

Formally, if the particles remain well separated, the perturbative solution for the radiation field
can be constructed as an expansion in powers of the gauge coupling {J . (Less formally, we have
a double expansion:

2eb? T <« 1 g>c?/Eb T3 <« 1 ¢t ~Eb>1)



Perturbative solution: Leading order equations of motion:

A fixed configuration of worldlines z#(7),c%(7) sources a gauge field

e

dx/ e—ié-(m—a}a)

M@ 4 e—ié-az
o ey — g /(%4 I =g / 07 s g eI (7),
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J

Feed back to get self-consistent eqns. of motion:

T B

. 5 Cl4€ e —4- ) L
Mala = 19 Z dTB /3 (Ca - CB) {(va-vg)ﬁ — (£ va)ug |,

T B

d*l et abe b o
— gQZ/dTB 73 fab cgcﬁ(va - v3)

w/ ot = SU’LL(TQ) vk = Uu(Ta) ng — CZ(TCX)



Radiation:

Starts at () ( 92) . Two types of effects:

|. Direct emission by time-dependent particle current:

> ) >
% ] (k)
[, a

=3 [t acy et

worldline o

2. Gluon emission sourced by self-interaction

x fabc




The total current has two types of color structures:

Ja“ = ¢° Z/ ditos(k zfabccb C%Aadj o A“
| \\ orbital eom’s
" M‘ ” color
Ny eoms
155] k\‘
. d4€ e’wa-ma d4€ eiﬁg-mg
Integration measure: _ a p
; dunal®) = drady | (5| [(2@4 z ]
X (27)46 (€ + L5 — k)
Partial amplitudes:
~ ™
p 1 p éi p
Aa,d] (’Ua ,UB) 5(25 o éa) —l_ k . va (k /Uﬁ) (k Ua)vﬂ
(2 k-/
AL = — 7 '(?éUa [(va - vg) <€g ~ Ui vé) — (k- va)vg + (k- vg)vh
\_ W,

As a check, the current obeys the Ward identity kujﬂa(/g) — (), but only after self-consistent
particle egns. of motion are plugged in to the diagrams.



Consistency checks |: Classical scattering and bremsstrahlung d — 4 : Kovchegov+Rischke, 1997
Gyulassy+McLerran, 1997

|. Classical scattering and gluon bremstrhalung: Initially well separated particles
with constant b vk, e at early times

" o Nl ~ o o o
& \( a a
ct (T — —o0) = co

2
J (k) | - 22/ :“aﬁ Co B Lo o —Va - vg L5 — 0 ) vt — ke UBVq
. O0(g2) me k-v4 © p k-va p

e

+if*o e { (k- vg)vh — (va - v)lh + (va - Uﬁ)]fz ’UZH

Va

consistent with our earlier results in general d (WG+Ridgway, 2016)



Consistency checks Il:  Non-relativistic limit
Ug(T) ~ (172704 — dfa/dt) U, < 1

Eqns of motion reduce to (in d = 4)

Using the e.o.m’s, the current simplifies to:

JN(x) = §*(2)Q* — Pu(t) - VI*(F) + O(v?)

a

Jo(x) = 8*(Z)p, (t) + O(v?)

w/ color monopole moment ()¢ = Z c(t)  (Q*=0) and color electric dipole

pU(t) = ) ca(t)Ta(t)

84



Double copy of gauge theory!?

In, 1611.03493 [711.09493, we (A. Ridgway+WG) proposed making the following formal
replacements to the gauge theory result

) > iph(r) |

-

~
\/\Trf ) s \{/
1
ifa1a2a3 _y [vvavs (q17q27q3) — _5 [n’/lV?, (ql _ q3)1/2 + 771/11/2 (q2 _ ql)l/s + 771/21/3 (q3 _ q2)’/1] :
,
[pa ) — pli(7) )
~N
1
9= —aja—1
2mp,;




Under this map:

a

w/

a )
&l % . 1 1 v v v !
" (k) = p— > mamg / dptas(k) [(5(% 0g) (g —€a)” + (vg - k)vY — (vq - k)%) AL

Pl .p )
~(va - V)Vl AL

\— _J
For k% = (0 this object satisfies

T () = TV (k) kT (k) = 0

so it defines a consistent pseudo-tensor in some theory of gravity, with (in d = 4) radiation fields

4GN dw —dwt *uv ~
e e (k)T (K),

r 27

h+ (t, ﬁ) —

GN dw Wt
TN I iwtpp
r o u (k)

o(t, 1) =

at future null infinity (retarded time ¢ and r — 00).



Dilaton gravity:

In fact, the gravity theory defined by T“’/(k) is a local theory coupled to classical point sources,

with Lagrangian
S =5y + Spp
S, = —2m%, /dda’;\/_[ — (d —2)g"" 0,00, 9|

Spp:—m/d76¢+...7 cce¢:1_|_¢_|_l¢2_|_”.w

(up to higher derivatives, more powers of the dilaton...). The role of the dilaton is to cancel the
explicit d’s from graviton exchange Bern+Grant(1999); Scherk+Schwarz (1974):

k i1 9

w QQQQQ, o8 T gud 2 ele el = gy el

It is also motivated by BC] for pure gauge theory, and by results of KLT:

A, @ Ay =¢® By ® houy



In the case of bremsstrhalung, we verified this explicitly by direct calculation (WG+Ridgway 2016)
in the graviton and dilaton channels:

g > @
%
11,V
graviton emission
channel: >
: S
%2\5% £00000 "
I v |
! EBI I
- Y
1
¢ _ 2
— e =14++ —0°+---
P N
g \\\ % k\‘\\\ : kj\‘\\\
scalar channel: — —t—
(a) (b) (c)

Y

Y
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We also find that T"”(k) has the correct non-relativistic limitin d = 4:

. 1.
L/ . Ll 8§ =2
Q) Ea m (xaxa 3 :ca>

This is consistent with the post-Newtonian limit of more general scalar-tensor theories in 4D.
(Will+Zaglauer 1989; Damour+Esposito-Farrese, 1992)



Bi-adjoint double copy and classical solutions

(WG, Prabhu, Thompson arXiv:1705.09263)

Starting from the tree level gauge theory amplitude

we can apply BCJ] backwards 11; — 67, to obtain a " zeroth copy” scattering amplitude

C; C;

AXM = A
" 27,: | | Propagators "




The corresponding amplitudes are those of a scalar field theory with (§ X é global symmetry

~

¢aa —  bi-adjoint scalar

and cubic interaction

znt — fabcfabc¢aa¢bb¢cc

(NOT technically natural as an EFT)

Color-kinematics relates all tree-level amplitudes in this theory to gluon scattering in pure Yang-
Mills (Cachazo, He, Yuan (201 3))



We find that the color-kinematics also relates classical solutions of this theory coupled to bi-color

charges
~ & &

6= e

~ ? #Da & (f - ?‘%
to the corresponding classical gauge theory solutions discussed earlier

¢ (z) = —y /k 6_Mj“@(k) 5/ T “ﬁl

k2




~S

Applying color-kinematics to ([ :

~a ~ ~ la uvp(
(CCX %ng ( [Caacﬁ] — I ( kagaagﬁ)pyappﬁ J

and Y — G ,we reproduce the classical radiation gauge field

T R |

A further color-kinematics transformation then yields the gravity solutions

[ ja&(k) — GZ(k)jg(k) — gu(k)gy(k)jﬁu/(k)j

directly from the much simpler Feynman rules in a scalar field theory.



Classical double copy and NLO Radiation

The rules proposed in 1611.03493 [711.09493 are puzzling from the viewpoint of BC| duality. Eg,
where do the (Lie, kinematic) Jacobi identities make an appearance!?

The situation was very recently clarified by C-H Shen (1806.07388) who worked out NLO
radiation in bi-adj.,YM, dilaton gravity.

Start with bi-adjoint scalar and YM radiation fields, written in the BCJ-like form at integrand level:
a,a E : ap ~a
_ pT\ “propagator
\—/(P =P ) matrix”

A Z / A ()CY Py ()N
X (ku(P - N)* =0)

“Ward id.”

. . a ),
Color-kinematics: CZ —> Nz

A% () > AP (K Z / du(k)dsNY Py (k)N",

(kAP = ki, AP = 0)



LO radiation:

Read off color structures and propagators from bi-adjoint scalar radiation:

a ei(kg) Ei =~ =~ ~a
Car Cﬁ] fa —1 [ Cﬁ]

k'poc

Read off kinematic structures from YM radiation:

o _ ( (Ca-cp) o (Pa - Pp)Pa
o ( [Cacs )" ) Mo ( (k- pa)pls — (k- pg)ph + 5(Pa - p8) (ba — £5)" >

Predict dilaton gravity amplitude in factorized form
T
(NTy» PN*

Note that at LO, the relation between color and kinematics is what one would have obtained from the
naive replacement rules introduced earlier:

c® — pt

fabc — THYP

e (%5 NH



However, at NLO the naive rules no longer work. From Shen 1806.07388

Cr=(c1-e)(cr-c3)cf Cq; = (c1-¢)(ca-e3)cd Ciz = (c1-¢3)[er,ca)” related by color
Cy=(c1-ca)(ca-c3)cg Cg = (c1-cs)(ca-cs)ef Cua=(c2-c3)er, e Jacobi ids.
COIOr 03 = (Cl . C3)(C52 . C3)C§ Cg = (Cl . 02)(01 . Cg)Cg Cl5 = (Cl . 02) [CQ,Cg]a
factors: Cy = (c1 - [ca, c3]) cf Cio = (c1-c3)(ca-c3)cy Cre = (c1-¢3) [c2,¢3]"
(fU” Set) C5 = ((‘1 . [62763]) Cg CH = (Cl . Cg)(CQ . C3)Cg 017 = (Cl . CQ) [C3,Cl]a
C(; = (Cl : [Cz 03]) Cg 012 — (Cl . Cg)(Cl . C3)Cg Clg = (CQ . C3) [C3,Cl]a
N = (p1-p2)(p1-p3)(p1-e)
) ] N, = - [ps, cloa) 4+ L . . ce)+ 1 .1l - [pa, .
Kinematic 4 ((p1 - [Ps, p2] - Los) + 5(P2 - p3) (1 - o)) (P1 - €) + 3 (p1 - Las) (p1 - [Pa, ps] - €)
factors: Nz = (p1-p2)(p2-p3)(p1-e)
(representative  Nig = (py-ps) ((laas - [p1,pa] - €) = (pr - p2) (2 - €))
sample)

Nig = ((li - [p2,ps] - las) — 3(p2 - ps)(hias - ga3) ) (P1 - €) + (p1 - las) (las - [pa, ps] - €)

+(p1 - [p2:p3] - las) (las - €) — (p2 - p3) (p1 - [l 1] - €) — 5(las - l1a3) (p1 - [p2,ps] - €)

Nig + Nog + No1 =0

Kinematic
Jacobi id.

(Shen only considered classical solutions with scattering BC's w/ ¢, - p, = 0. More recently
Plefka et al 1807.09859 considered the classical double copy map of particle EOMS at NLO for
general orbits.




Spin, axions, and other finite size effects:

WG, Li, Prabhu, 1712.09250
Li, Prabhu, 1803.02405

WGH+Li, to appear

So far, we have treated the sources on both sides of the classical double copy as point objects.
Shen’s proposal also sheds light on the internal structure of the radiating sources:

|. Spin effects and axion couplings.

ll. Linear chromodynamic and tidal responses



Axion radiation and particle spin:

For spinless particles, there is no radiation in the anti-symmetric channel at LO or NLO.

aw(k)TW(k) — apy (k) = —au, (k)
kta,, (k) =0

This is expected on the basis of symmetry: There are no linear pt. particle couplings of the B
field that are consistent w/.

Uv

Two-form gauge invariance: B — B+ d\

Diff. invariance

unless the particles carry a spin degree of freedom SHY (7‘) — —§GVH (7‘) :

Spp D /dm“/%(qb)SWHWU



Does the spin interaction w/ B, arise as double copy of classical YM? Add a chromomagnetic
interaction to the classical color charge:

Spp = _/dfﬂca( VAT + g;: dsecq(s)S* Fy, + - -+,

Color current is modifed due to spin:

JH(x) = gls e Sint = Z/da:“’ d(x —x(s)) — Ka /dseS“"Dg [cod(x — x(s))].

As is the energy-momentum tensor

v % v)o 5(3j B CC(S)) a v)o
T (x) :/dx(“p )5(x—$(s))+/dx<“5 )90,6(x — x(s) —/ﬁzgS/dse 7 o S Lok
with spin $#(s) = —5""(s) defined to obey the constraint puS*" =0. For FI'"" =0:

PH — /dBXTO“(X, %)  ="CM” particle momentum
T — /dSX:C[uTOu] (x,20) = atp? — 2Vpt 4+ SH = “CM” particle angular
momemtum



Egns of motion from conservation laws:

Dujg = » (?} . D)Ca — %QSK[SMVFMV,C]G

d 1

Ep/‘ = gsc"F!'v, — §/<;gscaSO‘BD“F§B
8MT‘“’ =0 — — d

%SW = pto” — pPouH — 2f<;gscaF§‘[“Sa”]

Then the total current at O(g*), working to linear order in spin:




Then the total current at O(g

~

Ja

Bl o

2 . . . .
), working to linear order in spin:

= 10 Z/NQ,B

(Ca - cp)Ca Al + [Cas cpl* Ay)

where now the partial amplitudes are

a )
I jz 63 I K% H 2 %
Ay = Ka |(la Apglalls — la)" — k- o (g NDpg)abe — k- ps (ba APg)aPg + La(Sa ADg)
62
%, [(ea ALg)apls + (k- pg)(Sa A fa)ﬂ = g S (P o) (Sa AR
\_ _J
( )
A = (1;'2 ) l [(k-pa) {(Sa/\pa)“ ! k/\-];i) pii} + (Po  PB) {(Sa/\ﬁg)“ _ ! k/,\pf) pé}]
62
w8 g [ { e A Lg)aly = (k-p3)(Sa As) |+ (b £3)(Sa Aps)" = ( A s)als |
2 k-t 2 k-t
oy [(fﬁ ADB)a {5’5 - _pipéﬁ} + (k- pp)(Sa A K)* ] + /fﬁk (fﬁ ADa)s lf’é - pﬁpa]
62
_’{Oé(k.; )2(pap5)(k£5)(sa/\k)u
— . _
_ v _ T _
(Sa A ) = SHq, (@A b)e =a- (S, AD) (k,JE (k) =



To linear order in spin, the amplitude can be put in Shen’s factorized form

A%H (K Z / dp(k)C{ Py (k)N

w/ (o - )8 02 (k-Lg) L2,
O — ( Ca * Cp ga ) P — (k.an)Q kDo,

ea
k'pa _1

same as in the spinless case, but now
2
with spin-dependent kinematic factor:

NE ( (€s N pa)pplty — (s Apg)abl — (Pa - Pg)(Sa A K)" + (K- pa)(Sa A ps)” )
(5%) (k ‘pﬁ)(sa A\ ga)u T (za /\ ZB)BPZ - %(ga /\pﬁ)a(gﬁ - ga)“ - (O‘ A 5) .

However, this factorization is only possible for a specific choice of chromomagnetic coupling:

ErEEu.

(In the NR limit,for d =4 the dipole interaction is
K — —

m
K — —]. — — g-factor § = JDirac = 2
So this is a classical spin S > i with the magnetic properties of a Dirac particle.)




Double copy

For the choice | — — 1 ,we can define a gravitational double copy via the replacement

C% — N(SO)

which yields a consistent radiation field
A o> A) = [ ) (NTo)) " PR - (Nisoy + Nesn))"

with

b, AP =k, AM = 0

and

A’LW — Ay,u # 0 _ — Axion radiation



. . . . 1% :
For the choice of magnetic coupling where the double copy works, this A'u describes
radiation in a local theory of massless particles ¢, B,,, h,,

At the two derivative level, the form of this theory is fixed by diffeomorphism and two-form
gauge invariance to be :

Sy = —Qmi-,f /ddaj\/§ {R — (d —2)g""0,00,¢ + 112]8({)HWGHWJ

with couplings to point sources of the form
_ = Vo
S, = / A" 7($)H oS
(o) =R+ Ko+

We'll fix the unknown constants by comparing the double copy to the gravitational emission
amplitude.

f(6)=1+co+-



In addition to spin corrections to particle egns. of motion, must calculate the diagrams

S, Sa
> - - 2 — >
|
|
o i
, vV ' fy, V
|
|
|
> b 5
B
(a) (0)
Sa
T > >
g  k
I fy V
|
]
5> s é >
B

In order to cancel the explicit d dependence of the diagrams, need to fix dilaton couplings

[ =4 =0

to the axion and point particles respectively.




Furthermore, we need specific choice of axion-spin coupling K = 1/4

” 1
Spp = 1 /dw“’e_%SWHWU

~

\- _/

in which case we find agreement between axion radiation in gravity and its double copy. At linear
order in dilaton couplings, the gravity theory is consistent with the form

-

1 _
Sg — _zm?—’IQ /ddx\/§ R — (d o z)gMVa’u¢ay¢ T E6_4¢H,LWUHW/J

k b

_J

which precisely matches the the action for the (¢, g,,, B, ) sector of (oriented) non-critical
string theory. This can also written as  (Scherk, Schwarz 1974)

S, = —2m%,” /ddx\/gR(g,f’)

f‘“ __non-Riemannian
af connection w
torsion

(Spin correction to dilaton +graviton channels are also consistent with the double copy for this
choice of parameters  (Li, Prabhu 1803.02405) )



Generalization of spin double copy  wasi o sppear

The connection with classical strings can be made even more explicit via the following
generalization of the double copy procedure. Start with the YM spinning particle

AV (k Z/dﬂ k)C{ Py (k)N

a o (k-ls) L2
0o — ( (Ca - Cﬂ)ga ) P — (k-pa)?  kpa
[COM Cﬂ] o —1

k'pa

2

and formally introduce two independent copies of the spin variable

B u u 2
L "R =
NE = Ny + Nl |+ O(S?)
v 1% 174 (SO) (S )
(5" = S + i)
motivated by analogy with BCJ/scattering amplitudes
Y gy g

The double copy is now:

A () o> A (1) = [ dp() (N)" - P(R) - N

(kA = K, A" = 0)



This generalized procedure yields the same bulk theory, but modified axion couplings to the
worldline:

( 1 )
Sint = 1 /der_quHuuA (Sﬁy _ Sgy)

— _J

We recover the previous results of [712.09250 1803.02405 by taking S/EV — () or Sﬁ” — (0, but
there are other interesting possibilities:

1
(1) S’gl/ — S%V — §S'LW: axion decoupling.

(11) Sgl/7 S%V independent: open string === closed string!

Support for (Il) comes from taking the multipole expansion of bosonic strings coupled to
background fields...



String couplings:

The double copy is only consistent if on the gauge theory side, the sources have chromomagnetic
coupling k= -—1.

Are there fundamental classical objects with such couplings? Look at the open (bosonic) string
with Chan-Paton color charges. Taking point particle limit of the string

ca(0) - £s =0 ./' -
“ — —

Ca = Cq(0) 4+ c4(£)

Swe= 3 [ axt(ro)et (0,1 ALX) 3 -
=0,/ —gs/da:“caAM— §QS/CZTCGS'LL ij

(
uv __ v [T N 1%
SHY = E - (aha”, —at, a¥)

n>0

So the open string is an example of a fundamental massive object with g = gp = 2
Consistent with quantum analysis in Ferrara, Porrati, Telegdi 1992.

(See also d=4 Kerr-Newman BH, which has 9p = 2 (Horowitz, 1992))



We can also do this multipole expansion for the oriented (bosonic) closed string

St
¢, — 0
»

SR

. ts — 0
Sint = /ngeabBW(X)ﬁaX“abX” e S, =

2o’

/ dz*e™* Hy, (S — S1Y)
_|_ . 0.

e

in agreement with the double copy of the Yang-Mills source.

(relative sign consistent with worldsheet parity P : L <+ R of oriented string)
In terms of the string oscillator modes:

0
py Y w v W v
Sp = E - (aha”, — ot ar)

n>0

T, u -~
Szw — E : N (Oz%()&in o alinaoyz)
n
n>0

are independently conserved “zero modes” (in the absence of background fields) of the closed
string.



Polarizabilities and finite size corrections W+ appear

By including non-minimal interactions in the worldline EFT, we can systematically describe the
effects of finite size while retaining a point particle description. Eg:

Electromagnetic polarizability: Most general linear response to long wavelength external EM fields

S??nt:"""%/dTFWFM“—l-g/de'“x"’F/wF",,—l—---

Wilson o, 8 ~ R? coefficients are obtained by matching to the UV theory. (Eg. perfect
spherical conductor 3 = 6o = 67 R>)

Tidal response: Most general (parity invariant) Lagrangian in 4D encoding tidal polarizability
(“Love numbers”)

Spp = —m/dT-I—CE/dTEWEW—|—cB/dTBWBW_|_...

l !

E, = Rua,,gvavﬂ B,, = §eﬂp0,\v”v°‘Rm">‘
. N S 4 (Damour et al; Poisson et
(Flanagan+Hinderer, 2007) C ~ mR CBH.d=4 — 0 al;Kol+Smolkin 2010)

(NOTE: Ignoring dissipation/absorption. See WG+Rothstein (2006))



Color kinematics relates finite size sources in YM + gravity. Finite size object in scalar bi-adjoint

theory:
Spp = ¥ ki / dr Oy,

At leading order in derivatives

O, = e Oy = (c- qb)&(c : gb)a O3 = (¢-9)*(c-¢)* Oy =(c-¢- 5)2

Radiation from induced multipole moments in classical scattering process:




This is in direct correspondence with finite size terms in gauge theory:

O, — O,

Leading finite size terms for each source:

O, = F* F

ur— a

O3 = (P F%,)(i" Fao")

Radiation to linear order in spin:

> > > . >
Eﬂ‘ \ﬂ/ﬁ\/b\zj . _I_ gﬁ‘ \/bﬁ\/‘\q‘
> > > >
5 S5

S;;M = Zmn/dT@n

@QZ(C'F)MV(C°F)“V

Oy = (¢ F) i (c- F)*,a°



The structure of the gauge theory result predicts the form of the double copy:

Z / du(k)dsNY P;; (k)

Compare to radiation axion-dilaton gravity. Spin-independent terms:

ASH (k) > AP (K

. ) ( ) ) .
> > *~ — >
NN
| N
g‘ \\\\\k\\\\\L ‘ | k\\‘\ ‘ éz?\b%%
B c Z,B | 65
% | Gy
|
|
> ¢ >
3 3 P
(a) ()
axion
> /;a > . N >
| N
| N
U | | - %
| "
|
|
> ¢ > p >
_ § y _ y
graviton dilaton




Also need to go to linear order in spin to probe axion couplings
(" Rq \ ( Ra \ ( Rq \

SB ga

dilaton

\_ Sﬁ ) \_

graviton



Find that the gravitational amplitude is consistent with finite size effects in axion-dilaton gravity

O, s OF St =Y | dr0

But the gravitating sources are not generic. Four-parameter space of finite size interactions:

L 1
Of = 7 | Buvpe B77 + 4(d = 2)VIV OV, V0 + 2V Hyuy VO H “”p]

O% = 2278 | Ruvpo RMPY — 2R puo VFVY ¢ — 2g,\VHVY OV V4 2(d — 1)V, VAo VHV ;¢

:I:QRFWPUVMHVPA T ivaMVAvaMVU + TEVGHMVPVAH'LWP}

Of = 2375575 [Rrppo RPN — 205ARyuppr VPV o+ V V¢V iVt + 2V Ho )V, H™P |
Geometrical significance of relative coefficients?
1 -~ |
g _ ~ p2 g __ — sV 20\ 2
07 = 4R,uypa 04 T 4 (R,W//Offaj L )

® _ : 5 p2¢ i A [
Ruupa — curvature for connection of ¢, = ¢€¢“"g,, and torsion T = 56 ¢ H L

This is the same geometry implied by mass and spin couplings
(NOT equivalent to Sherk-Schwarz connection)



Conclusions:

There is evidence (now at NLO) of color-kinematics relations between bi-adjoint scalar,YM and
gravity radiation solutions:

Ny

Under color-kinematics:

Bi-adjoint charge === YM color charge — Spp = —m / dre? + e

(at least to quadratic
order in the scalar)

/chaS“’VF:LLV ] — /dCE”Sijuya

Also consistent for finite size objects (strings?) at the linear response level. Couples
naturally to “string frame” connection.



Open questions:

All orders proof of Shen’s proposal! Relation to (loop level) BCJ or
strings (KLT)?

Assuming it persists at higher orders in PT, is the classical double copy
useful for gravity wave calculations:

NLO and beyond for bound orbits? See: Plefka et al, 1807.09859

Axion can be projected out by setting SZW — S]'Léy

Systematic procedure for removing the dilaton!?
See: Luna, Nicholson, O’Connell,White, 1711.0390]

Classical double copy as formulated here only works for specific
(spinningtfinite size) objects in QCD and gravity. These are effective

point particle limits of more fundamental classical objects. What are
they!?



