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What happens during the scattering
process of elementary particles?

at least in N=4 SYM theory
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What happens during the scattering
process of elementary particles?

What about supergravity?



This talk

✤ Loop amplitudes in N=8 SUGRA 

✤ Claim: there is a surprising behavior in the UV region 
not explained by known symmetries

✤ No claim about UV divergence but about certain 
unexpected cancelations at the level of integrand

✤ Motivation: find properties which fix gravity amplitudes 
uniquely and search for the geometric picture 



Prehistory: hidden simplicity



✤ Early 80s: plans for new “supercolliders” - need for 
new calculations of gluon amplitudes

✤ Leading order 

Gluon amplitudes

gg ! ggg

(k1 · k4)(✏2 · k1)(✏1 · ✏3)(✏4 · ✏5)

Brute force calculation 24 pages of result

and many others



✤ Next process on the list:                  

✤ 220 Feynman diagrams     100 pages of calculations

✤ Calculation finished in 1985

✤ Paper with 14 pages of result

 

Parke-Taylor formula

gg ! gggg

⇠
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Parke-Taylor formula

✤ Within a year they realized 

 

pµ = �µ
aȧ�a�̃ȧ

h12i = ✏ab�
(1)
a �(2)

b

Spinor-helicity variables

[12] = ✏ȧḃ�̃
(1)
ȧ �̃(2)

ḃ

A6 =
h12i4

h12ih23ih34ih45ih56ih61i



Parke-Taylor formula

✤ Within a year they realized 

 

|A6|2 ⇠ (p1 · p2)3

(p2 · p3)(p3 · p4)(p4 · p5)(p5 · p6)(p6 · p1)



Parke-Taylor formula
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(1)
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Parke-Taylor formula

✤ Within a year they realized 

 

m Fermi National Accelerator Laboratory 

FERMILAB-Pub-86/42-T 
March, 1986 

AN AMPLITUDE FOR n GLUON SCATTERING 

STEPHEN 3. PARKE and T. R. TAYLOR 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, IL 60510. 

Abstract 

A non-trivial, squared helicity amplitude is given for the scattering of an 
arbitrary number of gluons to lowest order in the coupling constant and to 
leading order in the number of colors. 

*rated by Unlversitles Research Association Inc. under contract with the United States Department 01 Energy 

An =
h12i4

h12ih23ih34ih45i . . . hn1i



Change of strategy

What is the scattering amplitude?
Feynman diagrams Unique object fixed

by physical properties

Modern methods use both: 
Calculate the amplitude directly
Use perturbation theory

Lesson from Parke-Taylor:
On-shell gauge invariant objects
Helicity amplitudes An,k

e.g. k = 2 : 1�2�3+4+5+ . . . n+

Parke-Taylor formula



✤ New efficient methods of calculations

New methods for amplitudes

(Bern, Dixon, Kosower, 1993-today)

BlackHat collaboration
QCD background for LHC

Unitarity methods

Recursion relations

(Britto, Cachazo, Feng, Witten, 2005)

gg ! 4g gg ! 5g gg ! 6g

Feynman diagrams
Recursion relations

220
3

2485
6

34300
20

Build amplitude 
recursively from

simpler amplitudes



New methods for amplitudes

✤ Many new approaches and discoveries

✤ Not a single “amplitudes method”

String amplitudes
Amplitudes/Wilson loops duality
Hexagon bootstrap
Scattering equations
Color-kinematics duality
Ambitwistor strings
Integrability methods
On-shell diagrams, Amplituhedron and beyond
……



Loop integrand



Loop amplitude

✤ There are deep mysteries about tree-level amplitudes

✤ In this talk I will talk about loops

✤ We can rewrite it as:

A =
X

FD

Z
Ij d4`1 . . . d4`L

Obtain from 
Feynman rules

A =
X

k

ck

Z
Ik d4`1 . . . `L

Basis integrals
Kinematical coefficients



✤ Box integral

✤ Triangle and box integrals

I =
d4` s

`2(`+ k1 + k2)2

One loop example
Singularities of loop integrals

I Example: box integral

1

2 3

4

I =
d
4
` st

`2(`+ k1)2(`+ k1 + k2)2(`� k4)2

I Examples of integrals with non-logarithmic singularities:

I =
d
4
`

(`2)2(`+ k1)2(`+ k1 + k2)2
, I =

d
4
`

`2(`+ k1)2(`+ k2)2(`+ k3)2

I At higher loops: multiple poles
! Special numerator needed to cancel them.

Poles at infinity

• Example: triangle integral

1

2

3

4
I =

d
4
` s

`2(`+ k1)2(`+ k1 + k2)2

I Triple cut: `2 = (`+ k1)2 = (`+ k1 + k2)2 = 0

I Solution: `� k1 = ↵�1
f�2

I Residue on this cut:
I =

d↵

↵

I Pole for ↵ ! 1 which implies ` ! 1.

Tadpoles and 
other integrals

Vanish in dim reg

1

2 3

4



Planar integrand

✤ Planar (large N) limit: we can define global variables

✤ Switch integral and the sum:

x2 x2

x3
x3

x4 x4

x1

x1

y1
y1

y2

y2

k1 = (x1 � x2)

`1 = (x3 � y1)
etc

Dual variables

A =
X

k

ck

Z
Ik d4`1 . . . `L =

Z
I d4`1 . . . d

4`L

Loop integrand



Planar integrand

✤ Loop integrand is a rational function of momenta

Get the final amplitude: still want to integrate

A1�loop ⇠ Li2, log, ⇣2

AL�loop ⇠ ?
polylogs

elliptic polylogs
beyond

AL�loop =

Z
d4`1 . . . d

4`L I

Study the integrand instead
simpler (rational) function
many variables (loop momenta)
properties of the amplitude non-trivially 
encoded in the integrand



Cuts of the integrand

✤ Once we have the integrand we can take residues on 
poles: 

✤ Unitarity cut: `2 = (`+Q)2 = 0

M1�loop ���������!
`2=(`+Q)2=0

Mtree
L

1

`2(`+Q)2
Mtree

R

Cut $ `2 = 0



One-loop unitarity

✤ Higher cuts 

`2 = (`+Q1)
2 = (`+Q2)

2 = 0

Triple cut Quadruple cut
`2 = (`+Q1)

2 = (`+Q2)
2 = (`+Q3)

2 = 0



Generalized unitarity

✤ Generalized cuts

✤ On-shell diagrams: products of 3pt amplitudes

 

3pt on-shell kinematics 
very restrictive

Cut more propagators
complex on-shell momenta
product of tree amplitudes



On-shell diagrams
(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)



✤ Two options

Three point kinematics

pµ = �µ
aȧ�a

e�ȧ

Spinor helicity variables

h12i = ✏ab�1a�2b

[12] = ✏ȧḃ�1ȧ�2ḃ

�1 ⇠ �2 ⇠ �3

e�1 ⇠ e�2 ⇠ e�3
Two solutions for

3pt kinematics
p21 = p22 = p23 = (p1 + p2 + p3) = 0



✤ Two solutions for amplitudes

Three point amplitudes

h1 h2

h3

h1
h2

h3

h1 + h2 + h3  0

h1 + h2 + h3 � 0

A3 = h12i�h1�h2+h3h23i+h1�h2�h3h31i�h1+h2�h3

A3 = [12]+h1+h2�h3 [23]�h1+h2+h3 [31]+h1�h2+h3

Supersymmetry: amplitudes of super-fields
(all component fields included)



✤ In N=4 SYM: no need to specify helicities

Three point amplitudes

A(1)
3 =

�4(p1 + p2 + p3)�4([23]e⌘1 + [31]e⌘2 + [12]e⌘3)
[12][23][31]

A(2)
3 =

�4(p1 + p2 + p3)�8(�1e⌘1 + �2e⌘2 + �3e⌘3)
h12ih23ih31i

Easy book-keeping



✤ Draw arbitrary graph with three point vertices

✤ All legs are on-shell: gauge invariant objects

✤ Cuts of loop integrands: products of 3pt amplitudes

On-shell diagrams



✤ Building matrix with positive minors 

✤ Positive Grassmannian

Same diagrams in mathematics

4.6 Coordinate Transformations Induced by Moves and Reduction

Let us now examine how the identification of diagrams via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C 2 G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables fi and f 0
i of square-

move related diagrams are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables fi and f 0
i . Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would su�ce for our

purposes; but for the sake of concreteness, let us consider the following:

✓
1 ↵1 0 ↵4

0 ↵2 1 ↵3

◆ ✓
1 �2�3�4� 0 �4�

0 �2� 1 �1�2�4�

◆

(4.64)
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C =

✓
1 ↵1 0 �↵4

0 ↵2 1 ↵3

◆

Active area of research in algebraic geometry 
and combinatorics
Connection to cluster algebras, KP equations,…

↵k > 0



Surprising connection

✤ Building matrix with positive minors 

✤ For N=4 SYM the value of the diagram is equal to
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C =

✓
1 ↵1 0 �↵4

0 ↵2 1 ↵3

◆

⌦ =
d↵1

↵1

d↵2

↵2

d↵3

↵3

d↵4

↵4
�(C · Z)

Solves for        
in terms of 
and gives

↵i

�i, e�i

�(P )�(Q)

�(C · Z) = �(C · e�)�(C? · �)�(C · e⌘)
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d↵1

↵1

d↵2
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. . .

d↵n

↵n
�(C · Z)

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)
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merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables fi and f 0
i of square-

move related diagrams are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables fi and f 0
i . Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would su�ce for our

purposes; but for the sake of concreteness, let us consider the following:

✓
1 ↵1 0 ↵4

0 ↵2 1 ↵3

◆ ✓
1 �2�3�4� 0 �4�

0 �2� 1 �1�2�4�

◆

(4.64)
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C =

✓
1 ↵1 0 �↵4

0 ↵2 1 ↵3

◆

⌦ =
d↵1

↵3
1

d↵2

↵3
2

. . .
d↵m

↵3
m

Y

v

�v · �(C · Z)

(Herrmann, JT 2016)



Surprising connection

✤ Building matrix with positive minors 

✤ For general QFT the value of the diagram is equal to
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C =

✓
1 ↵1 0 �↵4

0 ↵2 1 ↵3

◆

⌦ = F (↵) �(C · Z)

✤ In a sense           defines a theory (as Lagrangian does)F (↵)



Amplitude from recursion relations

✤ In any theory: on-shell diagrams = cuts of the amplitude

✤ In planar N=4 SYM theory we have recursion relations
We learn about properties of the amplitude 

= +
X

L,R

4pt 1-loop



Amplituhedron

✤ Pieces in the recursion glue together

THE 3D INDEX OF AN IDEAL TRIANGULATION AND ANGLE STRUCTURES 7

that recover the complete hyperbolic structure. A case-by-case analysis shows that this ex-
ample admits an index structure, thus the index IT exists. This example appears in [HRS,
Example 7.7]. We thank H. Segerman for a detailed analysis of this example.

2.4. On the topological invariance of the index. Physics predicts that when defined,
the 3D index IT depends only on the underlying 3-manifold M . Recall that [HRS] prove
that every hyperbolic 3-manifold M that satisfies

(2.9) H1(M,Z/2) → H1(M, ∂M,Z/2) is the zero map

(eg. a hyperbolic link complement) admits an ideal triangulation with a strict angle struc-
ture, and conversely if M has an ideal triangulation with a strict angle structure, then M is
irreducible, atoroidal and every boundary component of M is a torus [LT08].

A simple way to construct a topological invariant using the index, would be a map

M "→ {IT | T ∈ SM}

where M is a cusped hyperbolic 3-manifold with at least one cusp and SM is the set of ideal
triangulations of M that support an index structure. The latter is a nonempty (generally
infinite) set by [HRS], assuming that M satisfies (2.9). If we want a finite set, we can use
the subset SEP

M of ideal triangulations T of M which are a refinement of the Epstein-Penner
cell-decomposition of M . Again, [HRS] implies that SEP

M is nonempty assuming (2.9). But
really, we would prefer a single 3D index for a cusped manifold M , rather than a finite
collection of 3D indices.

It is known that every two combinatorial ideal triangulations of a 3-manifold are related
by a sequence of 2-3 moves [Mat87, Mat07, Pie88]. Thus, topological invariance of the 3D
index follows from invariance under 2-3 moves.

Consider two ideal triangulations T and T̃ with N and N+1 tetrahedra related by a 2−3
move shown in Figure 1.

Figure 1. A 2–3 move: a bipyramid split into N tetrahedra for T and N + 1 tetrahedra for

T̃ .

Proposition 2.13. If T̃ admits a strict angle structure structure, so does T and IT̃ = IT .

For the next proposition, a special index structure on T is given in Definition 6.2.

Y = C · Z
Logarithmic volume form

⌦(Y, Zi)

Tree-level + loop integrand

(Arkani-Hamed, JT 2013)



Uniqueness

✤ Amplitudes in planar N=4 SYM are completely fixed
IR properties: logarithmic singularities
UV properties: no poles at infinity

⌦ ⇠ dx

x

` ! 1never a singularity at

+ absence of unphysical singularities

Reproduce it by unique geometry
with the same properties



Non-planar amplitudes



✤ No planarity - no labels, no unique integrand

✤ No planar limit of gravity amplitudes

✤ Same problem in full N=4 SYM amplitudes

What is     ?

Problem with labels

1 1 1

222 3

3

3 4

44

`

We have to work with diagrams
 In addition we have to include color factors



Non-planar N=4 SYM amplitudes

✤ Conservative approach

✤ Integrals same properties as in the planar limit: 

A =
X

i

ai · Ci · Ii

2

I2(`) ⌘
d4`

`2(`+ p2 + p3)2
; I3(`) ⌘

d4` (p1 + p2)2

`2(`+ p2)2(`� p1)2
;

I4(`) ⌘
d4` (p1 + p2)2(p2 + p3)2

`2(`+ p2)2(`+ p2 + p3)2(`� p1)2
. (2)

While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I4(↵)=dlog(↵1) ^ · · · ^ dlog(↵4), via:

↵1⌘`2/(` `⇤)2, ↵3⌘(`+p2+p3)2/(` `⇤)2,
↵2⌘(`+p2)2/(` `⇤)2, ↵4⌘(` p1)2/(` `⇤)2,

(3)

where `⇤ ⌘ h23i
h31i�1

e�2 is one of the quad-cuts of the box.
Similarly, the triangle can also be written in dlog-form,
I3(↵)=dlog(↵1) ^ · · · ^ dlog(↵4), via:

↵1⌘`2, ↵2⌘(`+p2)
2, ↵3⌘(` p1)

2, ↵4⌘(` · `⇤), (4)

where `⇤⌘�1
e�2.

Notice that while both the triangle and box integrals
are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop
4,N =

KN
4

X

�2S4

Z h
C(P )

�,NI(P )
� +C(NP )

�,N I(NP )
�

i
�4|2N

�
�·q

�
(5)

where � is a permutation of the external legs and
�4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,

K4 ⌘ [3 4][4 1]

h1 2ih2 3i and K8 ⌘
✓

[3 4][4 1]

h1 2ih2 3i

◆2

; (6)

the integration measures I(P )
� , I(NP )

� correspond to,

(7)

and

I(NP )
1,2,3,4 ⌘ (p1 + p2)

2 ⇥ (8)

for � = {1, 2, 3, 4}; and the coe�cients C(P ),(NP )
{1,2,3,4},N are

the color-factors constructed out of structure constants
fabc’s according to the diagrams above for N =4, and are
both equal to (p1 + p2)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )
� , is not itself logarithmic. We will show

this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )
1,2,3,4 in dlog-form, we should

first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )
1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p1+p2)2 and t⌘(p2+p3)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by

(`1+p3)2/(`1+p3)2, and notice that eI(P )
1,2,3,4 becomes the

product of two boxes—motivating the following change
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f1abf bcd . . . f4ef

Logarithmic singularites
No poles at infinity

This suggests there is a hidden
symmetry in the full theory

(Arkani-Hamed, Bourjaily, Cachazo, JT 2014)

(Bern, Herrmann, Litsey, Stankowicz, JT 2014, 2015)



✤ The lack of labels does not allow us to formulate the 
amplitude geometrically like Amplituhedron

✤ Some attempts to solve the labeling problems

✤ Well-defined are cuts of amplitudes: products of trees

Non-planar labels

Sum over all labels - overcounting
Linearized propagators

I =
1

`2(` · p1)(` · (p1 + p2))(` · p4)

1

2 3

4

spurious poles do not cancel

(Baadsgaard, Bjerrum-Bohr, Bourjaily, Caron-Huot, Damgaard, Feng 2015)



✤ We can cut the “non-planar integrand”

✤ Set two propagators to zero: 

Unique labels from cuts

1 1 1

222 3

3

3 4

44

`2 = (`+ p1 + p2)
2 = 0

A1�loop
4 = ++

1
1

2 23 3

44

Residue is the 
product of trees

`

`+ p1 + p2

Cut I = A4(1, 2, `, `+ p1 + p2)A4(3, 4,�`,�`� p1 � p2)



Non-planar cuts

✤ We can cut more via generalized unitarity

✤ If we cut everything into 3pt vertices: on-shell diagrams

Let us now show that n= nW 0 , which implies that there are no black-to-black

internal edges. Let us say the number of white multi-vertices is n+q; we want to

show that q=0. From the definition of k,

k = 2nB + nW 0 � nI = 2nB + (n+ q)� nI = 3nB + 2 + q � nI , (2.5)

from which we see that for k = 2, 3nB = nI q. But 3nB � nI on general grounds,

and so we must have that q=0, and hence 3nB=nI . Because q=0, there is one leg

connected to each white multi-vertex (nW 0 =n); and because 3nB=nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (n�=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets

⌧ 2T of leg labels for each of the (n 2) black vertices.

We can illustrate how this labeling works with the following examples:

⇢
(1 2 4)

(2 3 4)

� 8
<

:

(1 2 3)

(1 3 4)

(1 3 5)

9
=

; (2.6)

8
>>><

>>>:

(1 2 3)

(2 5 6)

(3 4 6)

(4 5 1)

9
>>>=

>>>;

8
>>>>>>>>><

>>>>>>>>>:

(1 2 4)

(1 8 9)

(2 9 3)

(3 6 4)

(4 6 5)

(6 8 7)

(6 9 8)

9
>>>>>>>>>=

>>>>>>>>>;

(2.7)

Notice that because there is no preferred way to order the external legs of a non-

planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices

should be viewed as completely arbitrary.

– 5 –

Non-planar N=4 SYM theory
✤ Connection to Grassmannian
✤ Logarithmic form

✤ Precise geometry not known in general

⌦ =
d↵1

↵1

d↵2

↵2
. . .

d↵m

↵m
· �(C · Z)



Non-planar cuts
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planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices

should be viewed as completely arbitrary.
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N=8 supergravity
✤ Connection to Grassmannian
✤ Non-logarithmic form

✤ New features different from YM

⌦ =
d↵1

↵3
1

d↵2

↵3
2

. . .
d↵m

↵3
m

Y

v

�v · �(C · Z)



Cuts in N=8 supergravity



✤ On-shell diagrams and cuts are all about singularities in the IR

✤ For N=4 SYM: this is full story, knowing on-shell diagrams is 
enough to fix the amplitude — there is no UV region

Singularities in IR

`21 = `22 = `23 = `24 = 0

Recursion relations = +
X

L,R



✤ For N=8 there are both IR and UV regions due to a different 
powercounting: on-shell diagrams are not enough

✤ In IR the amplitudes behaves very mildly 

✤ This behavior can be  nicely seen from a particular cut of the 
integrand

Singularities in IR

AL�loop
YM ⇠ 1

✏2L
AL�loop

GR ⇠ 1

✏L

1

2

3

4

collinear region
` ⇠ p1

cut of the amplitude cancels
`2 = (`� p1)

2 = 0



✤ Requires cancelation between diagrams even at 1-loop

✤ There is more detailed version of this cancelation 
suggesting there is still something to learn in IR

Singularities in IR

1
h`1`2i and cancel this factor. This does not happen in the case of on-shell diagrams but

it could for generalized cuts. Our conjecture is that indeed it does not happen and any

cut of the amplitude of this type would be proportional to h`1`2i. We will test this

conjecture explicitly on several examples.

Four point one-loop

The four-point one-loop N = 8 SUGRA amplitude was first given by Green, Schwarz

and Brink [5] as a sum of three box integrals2,

M1
4(1234) = istuMtree

4 (1234)
h
I14 (s, t) + I14 (t, u) + I14 (u, s)

i
, (5.8)

where the corresponding tree amplitude Mtree
4 (1234) carries the helicity informa-

tion. Multiplying by stu one finds the totally permutation invariant four-point gravity

prefactor, see e.g. [6],

stuMtree
4 (1234) =

✓
[34][41]

h12ih23i

◆2

| {z }
⌘K8

. (5.9)

The one-loop box integrals I14 ( , ) are defined without the usual st-type normal-

ization which was put into the permutation invariant prefactor K8. All integrals have

numerator N = 1 and therefore do not have unit leading singularity ±1, 0 on all

residues,

.

.

`1

2 3

4

I14 (s ; t) =

`1

2 3

4

I14 (t ; u) =

1

2 3

4

I14 (u ; s) =

`

(5.10)

.

As there is no unique origin in loop momentum space, there is a general prob-

lem how to label the loop momentum ` in individual diagrams; we will come back to

this point shortly. In the definition above we chose an arbitrary origin for the loop

momentum routing in the three boxes.

Let us consider a double cut of the amplitude where `2 = (` � p1)2 = 0 which

chooses natural labels on the cut. For complex momenta, there are two solutions to

2
The gravitational coupling constant (/2)n�2

for n-pt tree level amplitudes and (/2)n for n-pt

one-loop amplitudes will be suppressed ( =
p
32⇡GN ).
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Integrand cut
(On-shell diagram)

Integral 1

✏2
1

✏2
1

✏2
1

✏
=+ +

` = ↵p1

C1(↵) C2(↵) C3(↵) 0+ + =

(Herrmann, JT 2016)



UV from integrand

✤ Simple scaling check

I =

Z
d4`

`2(`+ p1)2(`� p2)2
I =

Z
d4`

`2(`+ p1 + p2)2

` ! 1

I ⇠
Z

d`

`3
I ⇠

Z
d`

`
⇠ ln⇤

pole at infinity



✤ We can repeat the same exercise for higher loops

✤ We can take this limit for the planar integrand but we 
can not do it for the non-planar amplitude

UV from integrand

`1, `2 ⇠ ` ! 1for

I =

Z
d4`1 d4`2

`21(`1 + p1)2(`1 + `2)2`22(`2 + p3)2
⇠ d`

`3

no good labels how to send ` ! 1

Z



Poles at infinity

✤ This scaling is just a special example of the poles at infinity

✤ We can perform cuts first and then send ` ! 1
Poles at infinity

• Example: triangle integral

1

2

3

4
I =

d
4
` s

`2(`+ k1)2(`+ k1 + k2)2

I Triple cut: `2 = (`+ k1)2 = (`+ k1 + k2)2 = 0

I Solution: `� k1 = ↵�1
f�2

I Residue on this cut:
I =

d↵

↵

I Pole for ↵ ! 1 which implies ` ! 1.

`

Cut all three
propagators

` = �1(ze�2 � e�1) Cut I =
dz

z

Solution

0 00

Residue Pole at 

z ! 1



Special case: N=4 SYM

✤ Planar sector: there are no poles at infinity

✤ Much stronger than UV finiteness, consequence of the 
hidden dual conformal symmetry

✤ All singularities are on the cuts when 

✤ Non-planar sector: evidence it is true as well

Never generate in the cut structure a pole for ` ! 1

`2 = 0

suggests a possible hidden symmetry in the full N=4 SYM theory



Cuts of N=8 supergravity

✤ We can check this property only on cuts

✤ Example: 3-loops

✤ Higher loops: higher poles 

1 2

34

⇠ dz

z

Pole at 
z ! 1

`(z) ! 1

⇠ zL�4 dz

(Bern, Herrmann, Litsey, Stankowicz, JT 2014, 2015)



✤ This is an example of the maximal cut

✤ Only one term in the sum contributes on the cut

✤ The numerator of        and the coefficient        given by 
the value of the cut (calculated as product of trees)

Cuts of N=8 supergravity

A =
X

k

ck

Z
d4`1 . . . d

4`L Ik

Cut all propagators in 
one of the integrals

ckIk



✤ Expected divergence at 7-loops from maximal cut

✤ The numerator of the diagram is fixed by the cut to be

`2

UV divergence in N=8

`1

matches the on-shell diagram
with pole at infinity

Supergravity

• No poles at infinity ! UV finiteness.

• For N = 4 SYM: integrand-based derivation of UV finiteness.

• If true for N = 8 SYM: trivially UV finite as well.

• Explicit checks of poles at infinity

I No poles at 1-loop and 2-loops.

I Logarithmic at 3-loops.

I Non-logarithmic at 4-loops, . . . .

5 6

1

2 3

4

• Results: Poles at infinity are present.

for `k ⇠ ` ! 1
Z

d4`1 . . . d
4`7

(`1 · `2)8

D
!

Z
d`

`



✤ Unless there is some cancelation mechanism

✤ Standard procedure: get the full amplitude, integrate, 
collect UV divergences and see if they cancel

✤ We are interested in a different question: is it possible to 
get improved behavior at infinity on the cut?

UV divergence in N=8

A =
X

k

ck

Z
d4`1 . . . d

4`L Ik

UV of the amplitude given by the UV of the worst diagram



UV surprises in N=8 supergravity
(Herrmann, JT, to appear)



Cuts and poles at infinity

Supergravity

• No poles at infinity ! UV finiteness.

• For N = 4 SYM: integrand-based derivation of UV finiteness.

• If true for N = 8 SYM: trivially UV finite as well.

• Explicit checks of poles at infinity

I No poles at 1-loop and 2-loops.

I Logarithmic at 3-loops.

I Non-logarithmic at 4-loops, . . . .

5 6

1

2 3

4

• Results: Poles at infinity are present.

1

2 3

4

cut, cut, cut, cut,…

Full amplitude
All integrals contribute
Can not check if there 
are poles at infinity

Maximal cut
One integral contributes
There are (higher) poles 
at infinity

We want to do this but can
not due to the lack of variables



Cuts and poles at infinity

Supergravity

• No poles at infinity ! UV finiteness.

• For N = 4 SYM: integrand-based derivation of UV finiteness.

• If true for N = 8 SYM: trivially UV finite as well.

• Explicit checks of poles at infinity

I No poles at 1-loop and 2-loops.

I Logarithmic at 3-loops.

I Non-logarithmic at 4-loops, . . . .

5 6

1

2 3

4

• Results: Poles at infinity are present.

1

2 3

4

cut, cut, cut, cut,…

Full amplitude
All integrals contribute
Can not check if there 
are poles at infinity

Maximal cut
One integral contributes
There are (higher) poles 
at infinity

Stop half-way in the 
cut structure: allow for

cancelations between diagrams



Non-trivial behavior at infinity

✤ We perform a cut where more diagrams contribute

✤ Send loop momenta to infinity: 

✤ Any cancelation on any cut would be interesting

AL�loop
4 = + + + . . .

z ! 1`k ! 1 by sending

zn = zm1 zm2 zm3 + . . .+ +

n < max(m1,m2, . . . )



Multi-unitarity cut

✤ Minimal cut which defines unique labels

`2k = 0

1

2 3

4

X

k

`k = p1 + p2

2-loop check in N=4 SYM
and N=8 SUGRA



✤ Send all loop momenta to infinity on the cut

z ! 1

X

k

ck�k = 0`k ! `k + zck�k
e⇣`k = �k

e�k

Compare the cut to individual integrals in N=8 supergravity

N=4 SYM
both
⇠ 1

z4

Multi-unitarity cut cancelations



✤ Send all loop momenta to infinity on the cut

z ! 1

X

k

ck�k = 0`k ! `k + zck�k
e⇣`k = �k

e�k

Cancelation!

N=4 SYM
both
⇠ 1

z4

Multi-unitarity cut cancelations

Compare the cut to individual integrals in N=8 supergravity



More cuts, more cancelations

✤ For practical purposes: to go to arbitrary loop order
cut more propagators
use parameter    
probe the pole at infinity

↵

↵ ! 1

Compare to the cut of the 
explicit result for the N=8 
amplitude in the literature



More cuts, more cancelations

✤ For practical purposes: to go to arbitrary loop order
cut more propagators
use parameter    
probe the pole at infinity

↵

↵ ! 1

Compare to the cut of the 
explicit result for the N=8 
amplitude in the literature

Cancelation!



✤ Another cut which hits the “worst behaved diagram” 

More cuts, more cancelations



✤ Another cut which hits the “worst behaved diagram” 

More cuts, more cancelations

Cancelation!



Remarks

✤ In planar N=4 SYM: absence poles at infinity tight to 
dual conformal symmetry

✤ In N=8 SUGRA: poles at infinity present for maximal 
cuts but seem to disappear if we cut less, perhaps 
completely absent for “non-planar integrand”

✤ Examples we checked also work for pure GR, just 
overall shift by eight powers ↵8



Outlook

✤ We have empirical evidence there is a surprising 
behavior of gravity integrands in the UV

✤ Explanation? Hidden property or symmetry? Relation 
to UV (e.g. controlling the divergence)? Explicit checks 
for N=8 but same mechanism seems to be there for GR 

✤ Preliminary: using the behavior at infinity as a 
constraint to fix the amplitude uniquely

Amplituhedron for gravity?



Thank you for your attention


