UV structure of gravity loop integrands Jaroslav Trnka
Center for Quantum Mathematics and Physics (QMAP), UC Davis in collaboration with Enrico Herrmann (SLAC)

What happens during the scattering process of elementary particles?

What happens during the scattering process of elementary particles?

What happens during the scattering process of elementary particles?

What happens during the scattering process of elementary particles?

This talk

* Loop amplitudes in N=8 SUGRA
* Claim: there is a surprising behavior in the UV region not explained by known symmetries
\% No claim about UV divergence but about certain unexpected cancelations at the level of integrand
* Motivation: find properties which fix gravity amplitudes uniquely and search for the geometric picture

Prehistory: hidden simplicity

Gluon amplitudes

* Early 80s: plans for new "supercolliders" - need for new calculations of gluon amplitudes
\because Leading order
Brute force calculation 24 pages of result
$g g \rightarrow g g g$
 and many others

$$
\left(k_{1} \cdot k_{4}\right)\left(\epsilon_{2} \cdot k_{1}\right)\left(\epsilon_{1} \cdot \epsilon_{3}\right)\left(\epsilon_{4} \cdot \epsilon_{5}\right)
$$

Parke-Taylor formula

\because Next process on the list: $g g \rightarrow g g g g$
\% 220 Feynman diagrams ~ 100 pages of calculations

GLUONIC TWO GOES TO FOUR

\% Calculation finished in 1985
\therefore Paper with 14 pages of result

Stephen J. Parke and T.R. Taylor Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL 60510 U.S.A.

Parke-Taylor formula

\because Next process on the list: $g g \rightarrow g g g g$
:220 Feynman diagrams ~ 100 pages of calculations

 thaminhmatitions berothen (than)

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
\% Within a year they realized

$$
A_{6}=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle}
$$

Spinor-helicity variables

$$
\begin{aligned}
p^{\mu} & =\sigma_{a \dot{a}}^{\mu} \lambda_{a} \tilde{\lambda}_{\dot{a}} \\
\langle 12\rangle & =\epsilon_{a b} \lambda_{a}^{(1)} \lambda_{b}^{(2)} \\
{[12] } & =\epsilon_{\dot{a} \dot{b}} \tilde{\lambda}_{\dot{a}}^{(1)} \tilde{\lambda}_{\dot{b}}^{(2)}
\end{aligned}
$$

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
\% Within a year they realized

$$
\left|A_{6}\right|^{2} \sim \frac{\left(p_{1} \cdot p_{2}\right)^{3}}{\left(p_{2} \cdot p_{3}\right)\left(p_{3} \cdot p_{4}\right)\left(p_{4} \cdot p_{5}\right)\left(p_{5} \cdot p_{6}\right)\left(p_{6} \cdot p_{1}\right)}
$$

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
\% Within a year they realized

$$
A_{6}=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle}
$$

Spinor-helicity variables

$$
\begin{aligned}
p^{\mu} & =\sigma_{a \dot{a}}^{\mu} \lambda_{a} \tilde{\lambda}_{\dot{a}} \\
\langle 12\rangle & =\epsilon_{a b} \lambda_{a}^{(1)} \lambda_{b}^{(2)} \\
{[12] } & =\epsilon_{\dot{a} \dot{b}} \tilde{\lambda}_{\dot{a}}^{(1)} \tilde{\lambda}_{\dot{b}}^{(2)}
\end{aligned}
$$

Parke-Taylor formula

Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
\% Within a year they realized

$$
A_{n}=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle \ldots\langle n 1\rangle}
$$

Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL 60510.

Change of strategy

What is the scattering amplitude?

Feynman diagrams

Unique object fixed
The Analytic by physical properties

Modern methods use both:

- Calculate the amplitude directly
- Use perturbation theory

Lesson from Parke-Taylor:

- On-shell gauge invariant objects
- Helicity amplitudes $A_{n, k}$
e.g. $k=2: 1^{-} 2^{-} 3^{+} 4^{+} 5^{+} \ldots n^{+}$

Parke-Taylor formula

New methods for amplitudes

* New efficient methods of calculations
- Unitarity methods

(Bern, Dixon, Kosower, 1993-today)
- Recursion relations

BlackHat collaboration QCD background for LHC

Build amplitude recursively from simpler amplitudes

$$
g g \rightarrow 4 g \quad g g \rightarrow 5 g \quad g g \rightarrow 6 g
$$

$$
\begin{array}{llll}
\text { Feynman diagrams } & 220 & 2485 & 34300
\end{array}
$$

Recursion relations
3
6
20

New methods for amplitudes

: Many new approaches and discoveries

- String amplitudes
- Amplitudes/Wilson loops duality
- Hexagon bootstrap
- Scattering equations
- Color-kinematics duality
- Ambitwistor strings
- Integrability methods
- On-shell diagrams, Amplituhedron and beyond
-
* Not a single "amplitudes method"

Loop integrand

Loop amplitude

\% There are deep mysteries about tree-level amplitudes
\% In this talk I will talk about loops

$$
\mathcal{A}=\sum_{F D} \int \underbrace{\substack{\text { Obtain from } \\ \text { Feynman rules }}}_{\substack{\mathcal{I}_{j} d^{4} \ell_{1} \ldots d^{4} \ell_{L} \\ \text { ewrite it as: }}}
$$

$$
\mathcal{A}=\sum_{k} c_{k} \int \underbrace{\mathcal{I}_{k} d^{4} \ell_{1} \ldots \ell_{L}}_{\text {Kinematical coefficients }} \text { Basis integrals }
$$

One loop example

\because Box integral

Tadpoles and other integrals

Vanish in dim reg

* Triangle and box integrals

$$
I=\frac{d^{4} \ell s}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}
$$

$I=\frac{d^{4} \ell s}{\ell^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}$

Planar integrand

: Planar (large N) limit: we can define global variables

$$
\begin{aligned}
k_{1}= & \left(x_{1}-x_{2}\right) \\
\ell_{1}= & \left(x_{3}-y_{1}\right) \\
& \text { Dual variables }
\end{aligned}
$$

\therefore Switch integral and the sum:

$$
\mathcal{A}=\sum_{k} c_{k} \int \mathcal{I}_{k} d^{4} \ell_{1} \ldots \ell_{L}=\int \mathcal{I} d^{4} \ell_{1} \ldots d^{4} \ell_{L}
$$

Planar integrand

\because Loop integrand is a rational function of momenta

- Get the final amplitude: still want to integrate

Study the integrand instead

- simpler (rational) function
- many variables (loop momenta)
- properties of the amplitude non-trivially encoded in the integrand

Cuts of the integrand

\therefore Once we have the integrand we can take residues on poles: Cut $\leftrightarrow \ell^{2}=0$
\because Unitarity cut: $\quad \ell^{2}=(\ell+Q)^{2}=0$

$$
\mathcal{M}^{1 \text {-loop }} \underset{\ell^{2}=(\ell+Q)^{2}=0}{ } \mathcal{M}_{L}^{\text {tree }} \frac{1}{\ell^{2}(\ell+Q)^{2}} \mathcal{M}_{R}^{\text {tree }}
$$

One-loop unitarity

\therefore Higher cuts

Triple cut
Quadruple cut

$$
\ell^{2}=\left(\ell+Q_{1}\right)^{2}=\left(\ell+Q_{2}\right)^{2}=0 \quad \ell^{2}=\left(\ell+Q_{1}\right)^{2}=\left(\ell+Q_{2}\right)^{2}=\left(\ell+Q_{3}\right)^{2}=0
$$

Generalized unitarity

\% Generalized cuts

Cut more propagators

- complex on-shell momenta
- product of tree amplitudes
\because On-shell diagrams: products of 3pt amplitudes

3pt on-shell kinematics very restrictive

On-shell diagrams

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)

Three point kinematics

* Two options

$\widetilde{\lambda}_{1} \sim \widetilde{\lambda}_{2} \sim \widetilde{\lambda}_{3}$

Spinor helicity variables

$$
\begin{aligned}
p^{\mu} & =\sigma_{a \dot{a}}^{\mu} \lambda_{a} \widetilde{\lambda}_{\dot{a}} \\
\langle 12\rangle & =\epsilon_{a b} \lambda_{1 a} \lambda_{2 b} \\
{[12] } & =\epsilon_{\dot{a} \dot{b}} \lambda_{1 \dot{a}} \lambda_{2 \dot{b}}
\end{aligned}
$$

Two solutions for 3pt kinematics

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=\left(p_{1}+p_{2}+p_{3}\right)=0
$$

Three point amplitudes

* Two solutions for amplitudes

$$
\begin{gathered}
A_{3}=[12]^{+h_{1}+h_{2}-h_{3}}[23]^{-h_{1}+h_{2}+h_{3}}[31]^{+h_{1}-h_{2}+h_{3}} \\
h_{1}+h_{2}+h_{3} \geq 0
\end{gathered}
$$

Supersymmetry: amplitudes of super-fields (all component fields included)

Three point amplitudes

\because In $\mathrm{N}=4$ SYM: no need to specify helicities

$$
\mathcal{A}_{3}^{(1)}=\frac{\delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \delta^{4}\left([23] \widetilde{\eta}_{1}+[31] \widetilde{\eta}_{2}+[12] \widetilde{\eta}_{3}\right)}{[12][23][31]}
$$

$$
\mathcal{A}_{3}^{(2)}=\frac{\delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \delta^{8}\left(\lambda_{1} \widetilde{\eta}_{1}+\lambda_{2} \widetilde{\eta}_{2}+\lambda_{3} \widetilde{\eta}_{3}\right)}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}
$$

Easy book-keeping

On-shell diagrams

\therefore Draw arbitrary graph with three point vertices

\because All legs are on-shell: gauge invariant objects
\because Cuts of loop integrands: products of 3pt amplitudes

Same diagrams in mathematics

* Building matrix with positive minors

$$
C=\left(\begin{array}{cccc}
1 & \alpha_{1} & 0 & -\alpha_{4} \tag{k}\\
0 & \alpha_{2} & 1 & \alpha_{3}
\end{array}\right)
$$

\because Positive Grassmannian

- Active area of research in algebraic geometry and combinatorics
- Connection to cluster algebras, KP equations,...

Surprising connection

* Building matrix with positive minors

\because For $\mathrm{N}=4 \mathrm{SYM}$ the value of the diagram is equal to

$$
\Omega=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \delta(C \cdot Z)
$$

Solves for α_{i} in terms of $\lambda_{i}, \widetilde{\lambda}_{i}$ and gives $\delta(P) \delta(Q)$

Surprising connection

* Building matrix with positive minors

\because For $\mathrm{N}=4$ SYM the value of the diagram is equal to

$$
\Omega=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \ldots \frac{d \alpha_{n}}{\alpha_{n}} \delta(C \cdot Z)
$$

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)

Surprising connection

* Building matrix with positive minors

\because For $\mathrm{N}<4$ SYM the value of the diagram is equal to

$$
\Omega=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \ldots \frac{d \alpha_{n}}{\alpha_{n}} \cdot \mathcal{J}(\alpha) \delta(C \cdot Z)
$$

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)

Surprising connection

* Building matrix with positive minors

\because For $\mathrm{N}=8$ SUGRA the value of the diagram is equal to

$$
\Omega=\frac{d \alpha_{1}}{\alpha_{1}^{3}} \frac{d \alpha_{2}}{\alpha_{2}^{3}} \ldots \frac{d \alpha_{m}}{\alpha_{m}^{3}} \prod_{v} \Delta_{v} \cdot \delta(C \cdot Z)
$$

(Herrmann, JT 2016)

Surprising connection

\% Building matrix with positive minors

\% For general QFT the value of the diagram is equal to

$$
\Omega=F(\alpha) \delta(C \cdot Z)
$$

\% In a sense $F(\alpha)$ defines a theory (as Lagrangian does)

Amplitude from recursion relations

\because In any theory: on-shell diagrams = cuts of the amplitude

- We learn about properties of the amplitude
\% In planar $\mathrm{N}=4$ SYM theory we have recursion relations

4pt 1-loop

Amplituhedron

(Arkani-Hamed, JT 2013)
\because Pieces in the recursion glue together

$$
Y=C \cdot Z
$$

Logarithmic volume form

$$
\Omega\left(Y, Z_{i}\right)
$$

Tree-level + loop integrand

Uniqueness

* Amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$ are completely fixed
- IR properties: logarithmic singularities $\Omega \sim \frac{d x}{x}$
- UV properties: no poles at infinity never a singularity at $\ell \rightarrow \infty$
+ absence of unphysical singularities

Reproduce it by unique geometry with the same properties

Non-planar amplitudes

Problem with labels

: No planarity - no labels, no unique integrand

What is ℓ ?
\% No planar limit of gravity amplitudes
: Same problem in full N=4 SYM amplitudes

- We have to work with diagrams
- In addition we have to include color factors

Non-planar N=4 SYM amplitudes

Conservative approach

$$
\begin{gathered}
A=\sum_{i} a_{i} \cdot C_{i} \cdot I_{i} \longrightarrow \\
f^{1 a b} f^{b c d} \ldots f^{4 e f}
\end{gathered}
$$

\because Integrals same properties as in the planar limit:

- Logarithmic singularites
- No poles at infinity

This suggests there is a hidden symmetry in the full theory

Non-planar labels

\because The lack of labels does not allow us to formulate the amplitude geometrically like Amplituhedron
\% Some attempts to solve the labeling problems

- Sum over all labels - overcounting
- Linearized propagators
(Baadsgaard, Bjerrum-Bohr, Bourjaily, Caron-Huot, Damgaard, Feng 2015)

$$
I=\frac{1}{\ell^{2}\left(\ell \cdot p_{1}\right)\left(\ell \cdot\left(p_{1}+p_{2}\right)\right)\left(\ell \cdot p_{4}\right)}
$$

\% Well-defined are cuts of amplitudes: products of trees

Unique labels from cuts

* We can cut the "non-planar integrand"

$$
A_{4}^{1-l o o p}=\overbrace{1 \|}^{2} \|_{1}^{2} \overbrace{1 \|_{3}}^{2}+\overbrace{1}^{4}
$$

\therefore Set two propagators to zero: $\ell^{2}=\left(\ell+p_{1}+p_{2}\right)^{2}=0$

Non-planar cuts

* We can cut more via generalized unitarity
\% If we cut everything into 3pt vertices: on-shell diagrams

Non-planar $\mathrm{N}=4$ SYM theory

* Connection to Grassmannian
* Logarithmic form

$$
\Omega=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \ldots \frac{d \alpha_{m}}{\alpha_{m}} \cdot \delta(C \cdot Z)
$$

* Precise geometry not known in general

Non-planar cuts

* We can cut more via generalized unitarity
\% If we cut everything into 3pt vertices: on-shell diagrams

$\mathrm{N}=8$ supergravity
\% Connection to Grassmannian
\therefore Non-logarithmic form

$$
\Omega=\frac{d \alpha_{1}}{\alpha_{1}^{3}} \frac{d \alpha_{2}}{\alpha_{2}^{3}} \cdots \frac{d \alpha_{m}}{\alpha_{m}^{3}} \prod_{v} \Delta_{v} \cdot \delta(C \cdot Z)
$$

\% New features different from YM

Cuts in $\mathbf{N}=8$ supergravity

Singularities in IR

\% On-shell diagrams and cuts are all about singularities in the IR

$$
\ell_{1}^{2}=\ell_{2}^{2}=\ell_{3}^{2}=\ell_{4}^{2}=0
$$

\because For $\mathrm{N}=4$ SYM: this is full story, knowing on-shell diagrams is enough to fix the amplitude - there is no UV region

- Recursion relations

Singularities in IR

* For $\mathrm{N}=8$ there are both IR and UV regions due to a different powercounting: on-shell diagrams are not enough
\% In IR the amplitudes behaves very mildly

$$
A_{Y M}^{L-\text { loop }} \sim \frac{1}{\epsilon^{2 L}} \quad A_{G R}^{L-\text { loop }} \sim \frac{1}{\epsilon^{L}}
$$

\% This behavior can be nicely seen from a particular cut of the integrand

$$
\ell^{2}=\left(\ell-p_{1}\right)^{2}=0
$$

collinear region

$$
\ell \sim p_{1}
$$

cut of the amplitude cancels

Singularities in IR

(Herrmann, JT 2016)
\because Requires cancelation between diagrams even at 1-loop

Integrand cut
(On-shell diagram)
Integral

$$
\begin{aligned}
C_{1}(\alpha)+C_{2}(\alpha)+C_{3}(\alpha) & =0 \\
\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon^{2}} & =\frac{1}{\epsilon}
\end{aligned}
$$

\because There is more detailed version of this cancelation suggesting there is still something to learn in IR

UV from integrand

\% Simple scaling check

$$
\begin{gathered}
I=\int \frac{d^{4} \ell}{\ell^{2}\left(\ell+p_{1}\right)^{2}\left(\ell-p_{2}\right)^{2}} \quad I=\int \frac{d^{4} \ell}{\ell^{2}\left(\ell+p_{1}+p_{2}\right)^{2}} \\
\quad \ell \rightarrow \infty \\
I \sim \int \frac{d \ell}{\ell^{3}} \quad I \sim \int \frac{d \ell}{\ell} \sim \ln \Lambda
\end{gathered}
$$

pole at infinity

UV from integrand

\because We can repeat the same exercise for higher loops

$$
\begin{gathered}
I=\int \frac{d^{4} \ell_{1} d^{4} \ell_{2}}{\ell_{1}^{2}\left(\ell_{1}+p_{1}\right)^{2}\left(\ell_{1}+\ell_{2}\right)^{2} \ell_{2}^{2}\left(\ell_{2}+p_{3}\right)^{2}} \sim \int \frac{d \ell}{\ell^{3}} \\
\text { for } \ell_{1}, \ell_{2} \sim \ell \rightarrow \infty
\end{gathered}
$$

\% We can take this limit for the planar integrand but we can not do it for the non-planar amplitude no good labels how to send $\quad \ell \rightarrow \infty$

Poles at infinity

\because This scaling is just a special example of the poles at infinity
\therefore We can perform cuts first and then send $\ell \rightarrow \infty$

$$
I=\frac{d^{4} \ell s}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}
$$

Cut all three propagators

$$
\ell=\lambda_{1}\left(z \widetilde{\lambda}_{2}-\widetilde{\lambda}_{1}\right)
$$

$$
\begin{array}{cc}
\text { Residue } & \text { Pole at } \\
\operatorname{Cut} I=\frac{d z}{z} & z \rightarrow \infty
\end{array}
$$

Special case: N=4 SYM

\% Planar sector: there are no poles at infinity

- Never generate in the cut structure a pole for $\ell \rightarrow \infty$
\therefore Much stronger than UV finiteness, consequence of the hidden dual conformal symmetry
$\%$ All singularities are on the cuts when $\ell^{2}=0$
\because Non-planar sector: evidence it is true as well
- suggests a possible hidden symmetry in the full $\mathrm{N}=4$ SYM theory

Cuts of $\mathrm{N}=8$ supergravity

(Bern, Herrmann, Litsey, Stankowicz, JT 2014, 2015)
: We can check this property only on cuts

* Example: 3-loops
~
\because Higher loops: higher poles $\sim z^{L-4} d z$

Cuts of $\mathrm{N}=8$ supergravity

$\%$ This is an example of the maximal cut

$$
A=\sum_{k} c_{k} \int d^{4} \ell_{1} \ldots d^{4} \ell_{L} \mathcal{I}_{k}
$$

Cut all propagators in one of the integrals
\because Only one term in the sum contributes on the cut
$\%$ The numerator of \mathcal{I}_{k} and the coefficient c_{k} given by the value of the cut (calculated as product of trees)

UV divergence in $\mathrm{N}=8$

* Expected divergence at 7-loops from maximal cut matches the on-shell diagram

with pole at infinity

\therefore The numerator of the diagram is fixed by the cut to be

$$
\int d^{4} \ell_{1} \ldots d^{4} \ell_{7} \frac{\left(\ell_{1} \cdot \ell_{2}\right)^{8}}{D} \rightarrow \int \frac{d \ell}{\ell} \quad \text { for } \quad \ell_{k} \sim \ell \rightarrow \infty
$$

UV divergence in $\mathrm{N}=8$

\% Unless there is some cancelation mechanism

$$
A=\sum_{k} c_{k} \int d^{4} \ell_{1} \ldots d^{4} \ell_{L} \mathcal{I}_{k}
$$

UV of the amplitude given by the UV of the worst diagram
\% Standard procedure: get the full amplitude, integrate, collect UV divergences and see if they cancel
*We are interested in a different question: is it possible to get improved behavior at infinity on the cut?

UV surprises in $\mathrm{N}=8$ supergravity

(Herrmann, JT, to appear)

Cuts and poles at infinity

- Full amplitude
- All integrals contribute
- Can not check if there are poles at infinity

We want to do this but can not due to the lack of variables

- Maximal cut
- One integral contributes
- There are (higher) poles at infinity

Cuts and poles at infinity

- Full amplitude
- All integrals contribute
- Can not check if there are poles at infinity

- Maximal cut
- One integral contributes
- There are (higher) poles at infinity

Stop half-way in the
cut structure: allow for cancelations between diagrams

Non-trivial behavior at infinity

\because We perform a cut where more diagrams contribute
$A_{4}^{L-l o o p}=$
+
$z^{m_{2}}$
$+\quad z^{m_{3}}$
十...
\because Send loop momenta to infinity: $\ell_{k} \rightarrow \infty$ by sending $z \rightarrow \infty$
\%Any cancelation on any cut would be interesting

$$
n<\max \left(m_{1}, m_{2}, \ldots\right)
$$

Multi-unitarity cut

\therefore Minimal cut which defines unique labels

$$
\begin{aligned}
\ell_{k}^{2} & =0 \\
\sum_{k} \ell_{k} & =p_{1}+p_{2}
\end{aligned}
$$

2-loop check in $\mathrm{N}=4$ SYM and $\mathrm{N}=8$ SUGRA

Multi-unitarity cut cancelations

\therefore Send all loop momenta to infinity on the cut

$$
\begin{aligned}
\ell_{k}=\lambda_{k} \tilde{\lambda}_{k} \quad \ell_{k} \rightarrow \ell_{k}+z c_{k} \lambda_{k} \widetilde{\zeta} \quad \sum_{k} c_{k} \lambda_{k}=0 \\
z \rightarrow \infty
\end{aligned}
$$

Compare the cut to individual integrals in $\mathrm{N}=8$ supergravity

us.

$\mathrm{N}=4 \mathrm{SYM}$
both
$\sim \frac{1}{z^{4}}$

Multi-unitarity cut cancelations

\because Send all loop momenta to infinity on the cut

$$
\begin{aligned}
\ell_{k}=\lambda_{k} \tilde{\lambda}_{k} \quad \ell_{k} \rightarrow \ell_{k}+z c_{k} \lambda_{k} \widetilde{\zeta} \quad \sum_{k} c_{k} \lambda_{k}=0 \\
z \rightarrow \infty
\end{aligned}
$$

Compare the cut to individual integrals in $\mathrm{N}=8$ supergravity

Cancelation!
$\mathrm{N}=4 \mathrm{SYM}$
both
$\sim \frac{1}{z^{4}}$

More cuts, more cancelations

\because For practical purposes: to go to arbitrary loop order

- cut more propagators
- use parameter α
- probe the pole at infinity

$$
\alpha \rightarrow \infty
$$

Compare to the cut of the explicit result for the $\mathrm{N}=8$ amplitude in the literature

$L=$	2	3	4	L
2	α^{-2}	α^{-3}	α^{-1}	α^{-L}
worst diagram	α^{-2}	α^{-1}	α^{0}	$?$

More cuts, more cancelations

\because For practical purposes: to go to arbitrary loop order

- cut more propagators
- use parameter α
- probe the pole at infinity

$$
\alpha \rightarrow \infty
$$

Compare to the cut of the explicit result for the $\mathrm{N}=8$ amplitude in the literature

More cuts, more cancelations

* Another cut which hits the "worst behaved diagram"

$L=$	3	4	5	L
	α^{-10}	α^{-8}	α^{-8}	α^{-8}

More cuts, more cancelations

* Another cut which hits the "worst behaved diagram"

Cancelation!

Remarks

\therefore In planar N=4 SYM: absence poles at infinity tight to dual conformal symmetry
\% In N=8 SUGRA: poles at infinity present for maximal cuts but seem to disappear if we cut less, perhaps completely absent for "non-planar integrand"

* Examples we checked also work for pure GR, just overall shift by eight powers α^{8}

Outlook

\% We have empirical evidence there is a surprising behavior of gravity integrands in the UV
\% Explanation? Hidden property or symmetry? Relation to UV (e.g. controlling the divergence)? Explicit checks for $\mathrm{N}=8$ but same mechanism seems to be there for GR
\% Preliminary: using the behavior at infinity as a constraint to fix the amplitude uniquely

Amplituhedron for gravity?

Thank you for your attention

