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For the Introduction to this lecture see next Friday’s Sackler Lecture.

Our prototype is the Schwarzschild black hole, with MBH � MPlanck

Metric: ds2 = gµνdx
µdxν ,

ds2 =
1

1− 2GM
r

dr2 −
(
1− 2GM

r

)
dt2 + r2dΩ2 ;

{
Ω ≡ (θ, ϕ) ,

dΩ ≡ (dθ, sin θ dϕ) .

Replace r , t by Kruskal-Szekeres coordinates x , y :

x y =
( r

2GM
− 1
)
er/2GM ;

y/x = et/2GM .

Then ds2 =
32(GM)3

r
e−r/2GM dx dy + r2dΩ2 .

Note: two solutions, (x , y) and (−x , −y) for every (r , t).
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Everything happens in the region close to the horizon: r ≈ 2GM. There:

x =

√
e/2

2GM u+ ; y =

√
e/2

2GM u− ; 2GM ≡ R

At r = 2GM, we have x = 0 : past event horizon, and
y = 0 : future event horizon.

ds2 → 2du+du− + R2dΩ2 . time t/4GM = τ

distant
time

local time

surface
Cauchy

III

III

IV

u
+

u
−

u−(τ) = u−(0)eτ

u+(τ) = u+(0)e−τ

As time goes forwards, u+

approaches the horizon
asymptotically;

as time goes backwards, u−

approaches the past horizon
asymptotically (tortoises).

Particles going in generate wave
functions on u+, particles going
out start as wave functions on u−.
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In a quantum mechanically pure black hole, we expect that all particles
entering through the future even horizon, should, some time later,
re-emerge from the past horizon; δt = O

(
8GM log(M/MPlanck)

)
.

 fu
tu

re
 e
ve

nt
 h

or
iz

on

     past event horizon

0 mapping

Whence this “boundary condition”?
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The gravitational force between in- and outgoing particles cannot be ignored;
but can be calculated:

The gravitational backreaction:

Calculate the Shapiro time delay caused by the grav. field of a fast
moving particle: simply Lorentz boost the field of a particle at rest:

δx

x

x ′

1

2

u
−

δp
−

δu
−

1
2

space-time
flat

space-time
flat

δu−(x̃) = −4G p−(x̃ ′) log |x̃ − x̃ ′| .
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time

space

The gravitational back reaction
has drastic consequences for the
out-going particles.

The effect increases exponentially
with time.

The in-particles leave their
‘footprints’ in the out-particles.

This changes everything!
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But the gravitational back reaction will move the data on the Cauchy
surface to the left or to the right !
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How to take this back reaction into account correctly (G = ~ = 1):

• We describe the microstates in terms of the QFT of soft-relativistic
particles populating the rigid background metric.

• If we include soft-relativistic gravitons then we are also taking mild
excitations of this metric itself into account.

• We must be aware of the fact that, as time proceeds (for an
external observer), the momenta of the particles in any fixed frame
will diverge exponentially: p±(τ)→ e∓τp±(0) , τ ≡ t/4MBH ;
so the gravitational shift diverges with time.

• Therefore, we first only consider small time intervals
O(MBH logMBH) in natural units.

• In these time units, the lifetime of the black hole, O(M3
BH), is close

to eternal.

• Therefore, we first concentrate on the metric of an eternal black
hole. Its metric is fixed (apart from the fluctuations effectuated by
the gravitons)

• The local observer sees no particles from the implosion, and no
Hawking particles (they all are too far away in time).
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Let’s redefine u+ → f (u+), u− → g(u−), then metric keeps the form

ds2 = 2A(u)du+du− + r2(u)dΩ2. → Map u± on compact domains:

The Penrose diagram for the eternal black hole.

For pure Schwarzschild (without matter either responsible for the
formation of a black hole, or representing its final decay):

III

IV

III
u+

u−

in

outin

out

∞

∞+

∞−
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Hard and soft particles
defined differently in other publications (!)

Particles near the horizon(s). Mass shell: 2p+p− + p̃2 + µ2 = 0.
p̃ is the transverse part of the momentum, |p̃| ≈ L/R , µ = mass;
p−(τ) = p−(0)eτ , p+(τ) = p+(0)e−τ . p̃ and µ are constant.

Note: for Hawking particles that escape to ∞ , |p̃| and µ are always small.

Define soft particles: |~p |, µ � MPlanck Negligible effect on space-time.
Define hard particles as particles that do cause space-time curvature.

We claim that all black hole microstates can be represented exclusively in
terms of soft particles on an eternal background metric.

This will be confirmed a posteriori.
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As τ →∞, p+ → 0, p− →∞:

As τ � 1, the in-particles become hard. Their interactions with other
in-particles are negligible (they basically move in parallel orbits), but they
do interact with the out-particles. The interaction through QFT forces
stay weak, but the gravitational forces make that (early) in-particles
interact strongly with (late) out-particles.

The fact that the mutual interactions between hard particles, at the
Planck mass or beyond, will not be needed, is a very important aspect of
this work. As we shall see.

Thus, we start with only soft particles on a Cauchy surface of the
Penrose diagram. These will define all quantum microstates of the black
hole at a given time.

Now, the question is how do these evolve with time.

The soft particles won’t stay soft; their longitudinal momenta will quickly
explode. To see what happens, calculate δu− (the Shapiro shift).
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An in-particle with momentum p− at solid angle Ω′ = (θ′, ϕ′)
causes a shift δu− at solid angle Ω = (θ, ϕ):

δu−(Ω) = 8πG f (Ω,Ω′)p− ; (1−∆Ω)f (Ω,Ω′) = δ2(Ω,Ω′) .

If there are many in-particles:

p−(Ω) =
∑
i

p−i δ
2(Ω,Ωi )

δu−(Ω) = 8πG

∫
d2Ω′f (Ω,Ω′)p−(Ω′) .

The distant observer will see unending streams of in- and out-particles
with given positions u+ or u−. Suppose p−(Ω) represents all in-particles
needed to describe any black hole in a given quantum state.

Later, we will see how imploding matter may be included in the
description starting with momentum distributions p− at the distant past.
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Then the out-particles will be at positions u−(Ω) given by

u−out(Ω) = 8πG

∫
d2Ω′f (Ω,Ω′)p−in(Ω′) .

Spherical harmonics expansion:

u±(Ω) =
∑
`,m

u`mY`m(Ω) , p±(Ω) =
∑
`,m

p±`mY`m(Ω) ;

[u±(Ω), p∓(Ω′)] = iδ2(Ω, Ω′) , [u±`m, p
∓
`′m′ ] = iδ``′δmm′ ;

u−out =
8πG

`2 + `+ 1
p−in , u+

in = − 8πG

`2 + `+ 1
p+
out ,

p±`m = total momentum in of out
in -particles in (`,m)-wave ,

u±`m = (`,m) - component of c.m. position of in
out-particles .
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Because we have linear equations, all different `,m waves decouple;
for each (`,m)-mode we have just one set of variables u± and p±.
They represent only one independent coordinate u+, with
p− = −i∂/∂u+, while u− ∝ p− and p+ ∝ u+ .

The dynamics completely factorises in (`,m) spherical harmonics –

Probably this remains true in the harmonics of a Kerr black hole, but that
generalization is not considered here.

3 more steps to be taken:
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1. Starting with the QFT states of the particles entering the future event
horizon, we must calculate their p−(θ, ϕ) distribution there. The high
momentum cut-offs must be chosen such that this mapping is unitary.

Comparable to vertex insertions as in string theory

2. p−(θ, ϕ) on the future event horizon generates u−(θ, ϕ) on the past
event horizon. But its support is [−∞, +∞], so it is spread over
both regions I and II . What is the physical interpretation of region II ?

Postulate that region II refers to the same black hole as region I ,
but not at the same solid angle Ω = (θ, ϕ). Only one possibility:

The antipodal identification: Ω→ Ω̃ = (π − θ, ϕ+ π)

3. “Firewalls”. Soft particles become hard particles. Must be ‘removed’.

Suggestion: all information carried by the in- particles is now present in the
out-particles. The in-particles are redundant (“quantum clones”). Leave
hard particles out. Hilbert space is now completely specified by the
coordinates u−(Ω) of soft out-particles. As soon as |u−| > LPlanck,
these out-particles are soft.

This is the “firewall transformation”; it removes firewalls.
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The basic, explicit, calculation

The algebra, 3 slides ago, generates the scattering matrix, by giving us
the boundary condition that replaces |in〉-states by |out〉-states. This
boundary condition replaces the old brick wall model and, in the spherical
harmonics expansion, it is embarassingly easy to derive.

All of this is NOT a model, or a theory, or an assumption, but a
calculation:

Apart from the most basic assumption of unitary evolution,
which forces us to fold the Penrose diagram along the antipodes,

this is nothing more than applying GR and quantum mchanics !

At every (`, ϕ), we have just one variable p−, proportional to one u−,
with the Fourier transform p+, proportional to u+.

So we have 1 dimensional quantum mechanics !
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Let there be two operators, u and p, obeying the commutator equation

[u, p] = i , so that 〈u|p〉 = 1√
2π
e ipu .

and a wave function |ψ〉, defined by ψ(u) ≡ 〈u|ψ〉 . Its Fourier
transform is

ψ̂(p) ≡ 〈p|ψ〉 = 1√
2π

∫ ∞
−∞

du e−ipuψ(u) .

Now introduce tortoise coordinates, and split both u and p in a positive
part and a negative part:

u ≡ σu e%u , p = σp e
%p ; σu = ±1 , σp = ±1 , and

ψ̃σu (%u) ≡ e
1
2%u ψ(σu e

%u ) , ˜̂ψσp (%p) ≡ e
1
2%p ψ̂(σp e

%p ) ;

normalisation requires: (1)

|ψ|2 =
∑
σu=±

∫ ∞
−∞

d%u|ψ̃σu (%u)|2 =
∑
σp=±

∫ ∞
−∞

d%p| ˜̂ψσp (%p)|2 .

What is the Fourier transform in these tortoise coordinates?
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˜̂ψσp (%p) =
∑
σu=±1

∫ ∞
−∞

d%u Kσuσp (%u + %p) ψ̃σu (%u) ,

with Kσ(%) ≡ 1√
2π
e

1
2% e−iσ e

%
.

Notice the symmetry under %u → %u + λ , %p → %p − λ , which is simply
the symmetry u → u eλ , p → p e−λ , a property of the Fourier
transform, a consequence of time translation invariance for the external
observer, and thus an invariance of our algebra.

We now use this symmetry to write plane waves:

ψ̃σu (%u) ≡ ψ̆σu (κ) e−iκ%u and ˜̂ψσp (%p) ≡ ˘̂ψσp (κ) eiκ%p with

˘̂ψσp (κ) =
∑
σp=±1

Fσuσp (κ)ψ̆σu (κ) ; Fσ(κ) ≡ 1√
2π

∫ ∞
−∞

Kσ(%)e−iκ%d% .

Thus, we see left-going waves produce right-going waves. One finds
(just do the integral):
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The Fourier transform in x , p space is non-local:

〈x |p〉 = 1√
2π

e ipx

But if we write x = σx e
%x and p = σp e

%p , where σx and σp are signs ±,
then the relation becomes:

〈%x , σx |%p, σp〉 = 1√
2π

e
1
2 (%x + %p) + iσxσp e

%x+%p

= K−σxσp (%x + %p) .

K+(x) :
0

In practice it will appear as if F has
a finite support.
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Look at how our soft particle wave functions evolve with time τ ,
slide # 10 or 13.

Their Hamiltonian is the dilaton operator. Let κ be the energy:

H = − 1
2 (u+p− + p−u+) = 1

2 (u−p+ + p+u−) =

i
∂

∂%u+

= −i ∂

∂%u−
= −i ∂

∂%p−
= i

∂

∂%p+

= κ .

The energy eigen states are C (p−)iκ = C e iκ %p− ,

The fourier operator on these states is:

Fσ(κ) = 1√
2π

∫ ∞
0

dy

y
y

1
2−iκ e−iσy = 1√

2π
Γ( 1

2 − iκ) e−
iσπ

4 −
π
2 κσ .

Matrix

(
F+ F−
F− F+

)
is unitary: F+F

∗
− = −F−F ∗+ and |F+|2 + |F−|2 = 1 .
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The scattering matrix

Add the scale factor 8πG
`2+`+1 , to get, if u± = σ±e

%± ,

ψin
σ+

e−iκ%
+
→ ψout

σ− eiκ%
−
,(

ψout
+

ψout
−

)
=

(
F+(κ) F−(κ)

F−(κ) F+(κ)

)
e−iκ log

(
8πG/(`2 + `+ 1)

) (
ψin

+

ψin
−

)
.

These equations generate the contributions to the scattering matrix from
all (`,m) sectors of the system, where |m| ≤ `. At every (`,m), we have
a contribution to the position operators u±(θ, ϕ) and momentum
operators p±(θ, ϕ) proportional to the partial wave function Y`m(θ, ϕ).
The signs of u±(θ, ϕ) tell us whether we are in region I or region II . The
signs of p±(θ, ϕ) tell us whether we added or sutracted a particle from
region I or region II .

Considering all (`, m) values with ` < `0 ≈ MBH/MPlanck (the angular

momentum limit), gives us ≈ 2
1
2 `

2
0 microstates, which is the right order

of magnitude. But note that this black hole is not thermal.
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a) Wave functions ψ(u+) of the in-particles live in region I , so u+ > 0.
b) Out-particles in region I have ψ(u−) with u− > 0.

0
in

u+

u−

Region I

a)

ψin (u+) ,   u+ > 0

0
out

u+

u−

Region I

b)
ψout (u−) ,   u− > 0

0
in u+

u−
Region II

c)u+ < 0

ψin (u+)

0
out

u+

u−
Region II

d)

u− < 0
ψout (u−)

The physical
picture

c , d) In region II , in-particles have u+ < 0 and out-particles u− < 0.
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Note that the in-particles will never get the opportunity to become truly
hard particles.

Wave functions of soft particles going in are reflected as wave functions
going out. These again emerge as soft particles.

Thus, there is no firewall, ever.

In the previous slide, the total of the in-particles in regions I and II are
transformed (basically just a Fourier transform) into out-particles in the
same two regions.

Note that the regions III and IV in the Penrose diagram (see slide 12)
never play much of a role, even if an observer falling in region III would
want to assure us that (s)he is still alive.

These regions are best to be seen as lying somewhere on the time-line
where time t is beyond infinity (thus a mere repetition of the degrees of
freedom we have seen before)
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The antipodal identification

Regions I and II of the Penrose diagram are exact copies of one another.
Often, it was thought that region II describes something like the ‘inside’
of a black hole. That cannot be right, since region II , like region I , has
asymptotic regions. Hawking suggested that region II might be some
other black hole, in an other universe, or far away in the same universe.
However, our 2× 2 scattering matrix implies that the two regions are in
contact with each other quantum mechanically. In ordinary branches of
physics, such long-distance communication can never take place.

Therefore it was natural to assume that region II describes the same
black hole as region I . It must then represent some other part of the
same black hole. Which other part? The local geometry stays the same,
so we must be dealing with an O(3) operator whose square is the identity.

There is exactly one possibility: This is the O(3) operator −I, being:

the antipodal mapping.

So this is not an element of SO(3), which will give us constraints on the CP symmetry
structure of the Standard Model interactions.
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Antipodal identification only holds for the central point (origin) of the
Penrose diagram. Regions I and II are different regions of the universe.
But relating region II to region I by demanding that the angular
coordinates are antipodes, means that now the mapping from
Schwarzschild coordinates to Kruskal Szekeres coordinates is one-to-one.
This now turns out to be an essential property of our coordinate
transformations. Thus, we arrive at a new restriction for all general
coordinate transformations:

In applying general coordinate transformations for quantized
fields on a curved space-time background, to use them as a
valid model for a physical quantum system, one must demand
that the following constraint hold: the mapping must be
one-to-one and differentiable. Every space-time point
(r , t, θ, ϕ) now maps onto exactly one point (x , y , θ′, ϕ′),
without the emergence of cusp singularities.

The emergence of a non-trivial topology needs not be completely absurd,
as long as no signals can be sent around. This is the case at hand here.
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THE END
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