Scattering Amplitudes from Ambitwistor Strings

Ricardo Monteiro

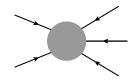
Queen Mary University of London

Current Themes in High Energy Physics and Cosmology, Copenhagen, 16 August 2018

with Y. Geyer (IAS), L. Mason (Oxford), P. Tourkine (CERN): 1507.00321, 1511.06315, 1607.08887

with Y. Geyer (IAS): 1711.09923, 1805.05344

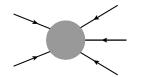
Scattering Amplitudes



Calculable with Feynman diagrams:

- good: general, clear physical picture.
- bad: inefficient, symmetries obscured.

Scattering Amplitudes

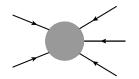


Calculable with Feynman diagrams:

- good: general, clear physical picture.
- bad: inefficient, symmetries obscured.

Every theoretical physicist who is any good knows six or seven different theoretical representations for exactly the same physics.

Scattering Amplitudes



Calculable with Feynman diagrams:

- good: general, clear physical picture.
- bad: inefficient, symmetries obscured.

Every theoretical physicist who is any good knows six or seven different theoretical representations for exactly the same physics.

Modern approaches:

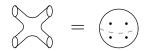
- analyticity, kinematic variables (e.g. on-shell), symmetries.
- relations between theories (e.g. gravity vs gauge theory).
- new formulations of QFTs.

QFT from low-energy string theory: alternative to Feynman expansion.

QFT from low-energy string theory: alternative to Feynman expansion.

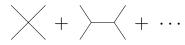
 $\times + \rightarrow + \cdots$

particle scattering (many Feynman diagrams)

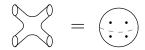


string scattering (one "world-sheet", 2D CFT)

QFT from low-energy string theory: alternative to Feynman expansion.



particle scattering (many Feynman diagrams)



string scattering (one "world-sheet", 2D CFT)

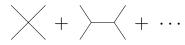
Old idea: calculate QFT amplitudes from string theory.

[Green, Schwarz, Brink 82]

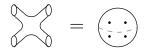
Insights: UV divergences, algebraic structure,

gravity (closed strings) v.s. gauge theory (open strings), ...

QFT from low-energy string theory: alternative to Feynman expansion.



particle scattering (many Feynman diagrams)



string scattering (one "world-sheet", 2D CFT)

Old idea: calculate QFT amplitudes from string theory.

[Green, Schwarz, Brink 82]

Insights: UV divergences, algebraic structure,

gravity (closed strings) v.s. gauge theory (open strings), ...

Hard: higher loop corrections (simpler at low energy), dropping susy.

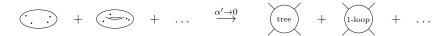
World-sheet Models of (Massless) QFTs

String theory: field theory is $\alpha' \rightarrow 0$, massive modes decouple, $m_n^2 = c_n/\alpha'$.

Target space is spacetime.

World-sheet Models of (Massless) QFTs

String theory: field theory is $\alpha' \rightarrow 0$, massive modes decouple, $m_n^2 = c_n/\alpha'$.



Target space is spacetime.

Is there truncated version just for QFT?

Ambitwistor strings: no α' , only massless states.

$$\underbrace{\begin{array}{c} \hline \\ \end{array}} + \underbrace{\begin{array}{c} \hline \\ \end{array}} + \\ \end{array} + \\ \end{array} + \\ \end{array} = \\ \underbrace{\begin{array}{c} \\ \end{array}} + \\ \underbrace{\begin{array}{c} \\ \end{array}} + \\ \end{array} + \\ \end{array} + \\ \end{array}$$

Target space is space of (complex) null geodesics = *ambitwistor space*. Formulas for amplitudes based on *scattering equations*.

Worldsheet Models \longleftrightarrow Scattering Equations

Old story

Twistor string theory [Witten 03] \longrightarrow RSV formula [Roiban, Spradlin, Volovich 04]

D = 4. SYM, SUGRA [Hodges, Cachazo, Geyer, Skinner, Mason 12].

Only tree level (unwanted states). [Berkovitz, Witten 04]

Worldsheet Models \longleftrightarrow Scattering Equations

Old story

Twistor string theory [Witten 03] \longrightarrow RSV formula [Roiban, Spradlin, Volovich 04]

D = 4. SYM, SUGRA [Hodges, Cachazo, Geyer, Skinner, Mason 12].

Only tree level (unwanted states). [Berkovitz, Witten 04]

New story

Any D. Many theories of massless particles.

Loop-level progress! Unwanted states absent or projected out.

Outline

- Tree level
- One loop
- Two loops

Scattering Equations

[Cachazo, He, Yuan '13]

[Previous history: Fairlie, Roberts '72, Gross, Mende '88, Witten '04]

Consider *n* massless particles, $k_i^2 = 0$, i = 1, ..., n, $\sum k_i = 0$.

$$E_i = \sum_{j \neq i} \frac{k_i \cdot k_j}{\sigma_i - \sigma_j} = 0, \quad \forall i$$

• kinematic invariants $s_{ij} = (k_i + k_j)^2 = 2 k_i \cdot k_j \longrightarrow \text{points } \sigma_i \in \mathbb{CP}^1$

$$SL(2,\mathbb{C})$$
 invariance, $\sigma
ightarrow rac{A\sigma+B}{C\sigma+D}$

• (n-3)! solutions $\sigma_i^{(A)}$.

Scattering Equations

[Cachazo, He, Yuan '13]

[Previous history: Fairlie, Roberts '72, Gross, Mende '88, Witten '04]

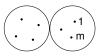
Consider *n* massless particles, $k_i^2 = 0$, i = 1, ..., n, $\sum_{i=1}^{n} k_i = 0$.

$$E_i = \sum_{j \neq i} \frac{k_i \cdot k_j}{\sigma_i - \sigma_j} = 0, \quad \forall i$$

• kinematic invariants $s_{ij} = (k_i + k_j)^2 = 2 k_i \cdot k_j \longrightarrow \text{points } \sigma_i \in \mathbb{CP}^1$

$$SL(2,\mathbb{C})$$
 invariance, $\sigma
ightarrow rac{A\sigma+B}{C\sigma+D}$

- (n-3)! solutions $\sigma_i^{(A)}$.
- factorisation: $(k_1 + \ldots + k_m)^2 \rightarrow 0 \quad \longleftrightarrow \quad \sigma_1, \ldots, \sigma_m \rightarrow \sigma_*$



[Dolan, Goddard 13]

CHY Formulas

[Cachazo, He, Yuan '13]

Tree-level scattering amplitude:

CHY Formulas

[Cachazo, He, Yuan '13]

Tree-level scattering amplitude:

Measure is universal.

$$\mathcal{A} = \int_{\mathfrak{M}_{0,n}} d\mu \ \mathcal{I}$$

- $d\mu \sim \prod_i d\sigma_i \,\delta(E_i)$ localised on solutions to scattering equations

CHY Formulas

[Cachazo, He, Yuan '13]

Tree-level scattering amplitude:

Measure is universal.

$$\mathcal{A} = \int_{\mathfrak{M}_{0,n}} d\mu \ \mathcal{I}$$

- M_{0,n} = moduli space of sphere with *n* marked points
 = space of {σ_i}, up to SL(2, C) transf.
- $d\mu \sim \prod_i d\sigma_i \,\delta(E_i)$ localised on solutions to scattering equations
- $\mathcal{I}(\sigma_i)$ specifies the theory.

CHY Formulas

[Cachazo, He, Yuan '13]

Tree-level scattering amplitude:

Measure is universal.

$$\mathcal{A} = \int_{\mathfrak{M}_{0,n}} d\mu \ \mathcal{I}$$

- M_{0,n} = moduli space of sphere with *n* marked points
 = space of {σ_i}, up to SL(2, C) transf.
- $d\mu \sim \prod_i d\sigma_i \,\delta(E_i)$ localised on solutions to scattering equations
- $\mathcal{I}(\sigma_i)$ specifies the theory.

Direct evaluation:

$$\mathcal{A} = \sum_{A=1}^{(n-3)!} rac{\mathcal{I}}{J} \Big|_{\sigma_i = \sigma_i^{(A)}}$$

Scattering equations hard to solve, but no need for that!

[Dolan, Goddard; Cachazo, Gomez; Baadsgaard at al; Huang et al; Sogaard, Zhang; Cardona, Kalousios; Fu et al; . . .]

[Cachazo, He, Yuan '13]

Ingredients in Yang-Mills (gluon) $e^{i\mathbf{k}\cdot\mathbf{x}}\epsilon_{\mu}T^{a}$, Gravity (graviton, ...) $e^{i\mathbf{k}\cdot\mathbf{x}}\varepsilon_{\mu\nu}$:

[Cachazo, He, Yuan '13]

Ingredients in Yang-Mills (gluon) $e^{ik \cdot x} \epsilon_{\mu} T^{a}$, Gravity (graviton, ...) $e^{ik \cdot x} \varepsilon_{\mu\nu}$:

• kinematics $(\epsilon_i^{\mu}, k_i^{\mu})$: pfaffian of matrix $Pf'M(\epsilon_i^{\mu}, k_i^{\mu}, \sigma_i)$.

gauge invariant ($\epsilon_i^{\mu} \rightarrow \epsilon_i^{\mu} + \alpha k_i^{\mu}$) on $E_i = 0$.

• colour (T^{a_i}) : $C(a_i, \sigma_i) = \frac{\operatorname{tr}(T^{a_1} T^{a_2} \cdots T^{a_n})}{(\sigma_1 - \sigma_2)(\sigma_2 - \sigma_3) \cdots (\sigma_n - \sigma_1)} + \dots$ "Parke-Taylor"

[Cachazo, He, Yuan '13]

Ingredients in Yang-Mills (gluon) $e^{ik \cdot x} \epsilon_{\mu} T^{a}$, Gravity (graviton, ...) $e^{ik \cdot x} \varepsilon_{\mu\nu}$:

• kinematics $(\epsilon_i^{\mu}, k_i^{\mu})$: pfaffian of matrix $Pf'M(\epsilon_i^{\mu}, k_i^{\mu}, \sigma_i)$.

gauge invariant ($\epsilon^{\mu}_{i} \rightarrow \epsilon^{\mu}_{i} + \alpha k^{\mu}_{i}$) on $E_{i} = 0$.

• colour (T^{a_i}) : $C(a_i, \sigma_i) = \frac{\operatorname{tr}(T^{a_1} T^{a_2} \cdots T^{a_n})}{(\sigma_1 - \sigma_2)(\sigma_2 - \sigma_3) \cdots (\sigma_n - \sigma_1)} + \dots$ "Parke-Taylor"

Amplitudes are $\mathcal{A} = \int_{\mathfrak{M}_{0,n}} d\mu \mathcal{I}$. Clear *n*-particle structure in *D* dimensions!

Yang-Mills theory: $\mathcal{I}_{YM} = Pf' M(\epsilon_i) \times C(a_i)$

Gravity $(\varepsilon_i^{\mu\nu} = \epsilon_i^{\mu} \tilde{\epsilon}_i^{\nu})$: $\mathcal{I}_{\text{Grav}} = \text{Pf}' M(\epsilon_i) \times \text{Pf}' M(\tilde{\epsilon}_i)$

[Cachazo, He, Yuan '13]

Ingredients in Yang-Mills (gluon) $e^{ik \cdot x} \epsilon_{\mu} T^{a}$, Gravity (graviton, ...) $e^{ik \cdot x} \varepsilon_{\mu\nu}$:

• kinematics $(\epsilon_i^{\mu}, k_i^{\mu})$: pfaffian of matrix $Pf'M(\epsilon_i^{\mu}, k_i^{\mu}, \sigma_i)$.

gauge invariant ($\epsilon^{\mu}_{i} \rightarrow \epsilon^{\mu}_{i} + \alpha k^{\mu}_{i}$) on $E_{i} = 0$.

• colour (T^{a_i}) : $C(a_i, \sigma_i) = \frac{\operatorname{tr}(T^{a_1} T^{a_2} \cdots T^{a_n})}{(\sigma_1 - \sigma_2)(\sigma_2 - \sigma_3) \cdots (\sigma_n - \sigma_1)} + \dots$ "Parke-Taylor"

Amplitudes are $\mathcal{A} = \int_{\mathfrak{M}_{0,n}} d\mu \mathcal{I}$. Clear *n*-particle structure in *D* dimensions!

Yang-Mills theory: $\mathcal{I}_{YM} = Pf' M(\epsilon_i) \times C(a_i)$

 \Rightarrow Gravity \sim YM²

Gravity $(\varepsilon_i^{\mu\nu} = \epsilon_i^{\mu} \tilde{\epsilon}_i^{\nu})$: $\mathcal{I}_{\text{Grav}} = \text{Pf}' M(\epsilon_i) \times \text{Pf}' M(\tilde{\epsilon}_i)$

cf. Kawai-Lewellen-Tye relations '86 Bern-Carrasco-Johansson relations '08

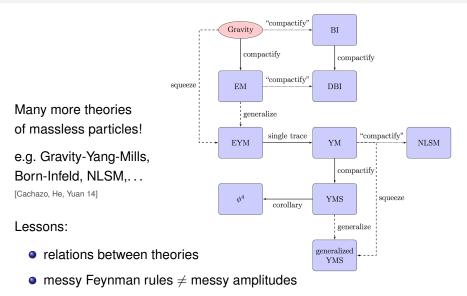
Other Examples

Many more theories of massless particles!

e.g. Gravity-Yang-Mills, Born-Infeld, NLSM,...

[Cachazo, He, Yuan 14]

Other Examples



SL(2, \mathbb{C}) invariant differential on \mathbb{CP}^1 : $\left| P_{\mu}(\sigma) = d\sigma \sum_{i=1}^n \frac{k_{i\mu}}{\sigma - \sigma_i} \right| \begin{pmatrix} \cdot^1 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$

Scattering equations:

$$P^2(\sigma) = 0 \iff \operatorname{Res}_{\sigma_i} P^2 = 2E_i = \sum_{j \neq i} \frac{2k_i \cdot k_j}{\sigma_i - \sigma_j} = 0$$

 $SL(2,\mathbb{C})$ invariant differential on \mathbb{CP}^1 :

$$P_{\mu}(\sigma) = d\sigma \sum_{i=1}^{n} \frac{k_{i\mu}}{\sigma - \sigma_{i}}$$

Scattering equations:

$$P^2(\sigma) = 0 \iff \operatorname{Res}_{\sigma_i} P^2 = 2E_i = \sum_{j \neq i} \frac{2 k_i \cdot k_j}{\sigma_i - \sigma_j} = 0$$

Theory on sphere based on P_{μ} ?

 $SL(2,\mathbb{C})$ invariant differential on \mathbb{CP}^1 :

Scattering equations:

$$P_{\mu}(\sigma) = d\sigma \sum_{i=1}^{n} \frac{k_{i\mu}}{\sigma - \sigma_{i}}$$

$$P^2(\sigma) = 0 \iff \operatorname{Res}_{\sigma_i} P^2 = 2E_i = \sum_{j \neq i} \frac{2k_i \cdot k_j}{\sigma_i - \sigma_j} = 0$$

Theory on sphere based on P_{μ} ?

Twistor string theory [Witten 03] \longrightarrow CHY predecessor [Roiban, Spradlin, Volovich 04] 4D Yang-Mills theory.

 $SL(2,\mathbb{C})$ invariant differential on \mathbb{CP}^1 :

Scattering equations:

$$P_{\mu}(\sigma) = d\sigma \sum_{i=1}^{n} \frac{k_{i\mu}}{\sigma - \sigma_{i}}$$

$$P^2(\sigma) = 0 \iff \operatorname{Res}_{\sigma_i} P^2 = 2E_i = \sum_{j \neq i} \frac{2 \, k_i \cdot k_j}{\sigma_i - \sigma_j} = 0$$

Theory on sphere based on P_{μ} ?

Twistor string theory [Witten 03] \longrightarrow CHY predecessor [Roiban, Spradlin, Volovich 04] 4D Yang-Mills theory.

Any D? Twistor ~ Ambitwistor space [Mason, Skinner 13]

= space of null geodesics of (complexified) spacetime.

Strings in Ambitwistor Space

[Mason, Skinner 13]

Worldline action for massless particle:

$$S_{\rm p} = \int_{\gamma} p_{\mu} dx^{\mu} - rac{1}{2} e p^2 \qquad d = d\lambda \, \partial_{\lambda}$$

worldline
$$\gamma$$

1

• *e* enforces $p^2 = 0$ ($m^2 = 0$).

• gauge freedom: $\delta x^{\mu} = \alpha p^{\mu}, \ \delta p_{\nu} = 0, \ \delta e = d\alpha.$

Strings in Ambitwistor Space

[Mason, Skinner 13]

Worldline action for massless particle:

$$S_{\rm p} = \int_{\gamma} p_{\mu} \, dx^{\mu} - rac{1}{2} \, e \, p^2 \, dz = d\lambda \, \partial_{\lambda}$$

worldline
$$\gamma$$

• *e* enforces
$$p^2 = 0$$
 ($m^2 = 0$).

• gauge freedom:
$$\delta x^{\mu} = \alpha p^{\mu}, \ \delta p_{\nu} = 0, \ \delta e = d\alpha.$$

Chiral complexification: "string" $S = \frac{1}{2\pi} \int_{\Sigma} P_{\mu} \bar{\partial} X^{\mu} - \frac{1}{2} e P^{2} \qquad \bar{\partial} = d\bar{\sigma} \partial_{\bar{\sigma}}$ $\Sigma \text{ at genus 0}$

•
$$P_{\mu} = d\sigma p_{\mu}(\sigma)$$
.

• *e* enforces $P^2 = 0$, same gauge freedom $(d\alpha \rightsquigarrow \bar{\partial}\alpha)$.

Ambitwistor space: (X^{μ}, P_{ν}) with $P^2 = 0$, $(X^{\mu}, P_{\nu}) \sim (X^{\mu} + \alpha P^{\mu}, P_{\nu})$.

[Mason, Skinner 13]

Action: $S = \frac{1}{2\pi} \int_{\Sigma} P_{\mu} \bar{\partial} X^{\mu} - \frac{1}{2} e P^2$ Amplitude: $\mathcal{A} = \left\langle \prod_{i=1}^{n} V_i \right\rangle$

Action: $S = \frac{1}{2\pi} \int_{\Sigma} P_{\mu} \bar{\partial} X^{\mu} - \frac{1}{2} e P^2$ Amplitude: $\mathcal{A} = \left\langle \prod_{i=1}^{n} V_i \right\rangle$

Gauge fix e = 0: $V_i = \int d\sigma_i \, \delta(\operatorname{Res}_{\sigma_i} P^2) e^{ik_i \cdot X} \dots k_i^2 = 0$ massless

Action: $S = \frac{1}{2\pi} \int_{\Sigma} P_{\mu} \bar{\partial} X^{\mu} - \frac{1}{2} e P^2$ Amplitude: $\mathcal{A} = \left\langle \prod_{i=1}^{n} V_i \right\rangle$

Gauge fix e = 0: $V_i = \int d\sigma_i \,\delta(\operatorname{Res}_{\sigma_i} P^2) \, e^{ik_i \cdot X} \dots k_i^2 = 0$ massless Integrate $X^{\mu} \Rightarrow \bar{\partial} P_{\mu} = 2\pi i \sum_i k_{i\mu} \,\delta^2(\sigma - \sigma_i)$

 $\Rightarrow P_{\mu}$ is meromorphic with simple poles at σ_i with residues $k_{i\mu}$.

- Action: $S = \frac{1}{2\pi} \int_{\Sigma} P_{\mu} \bar{\partial} X^{\mu} \frac{1}{2} e P^2$ Amplitude: $\mathcal{A} = \left\langle \prod_{i=1}^{n} V_i \right\rangle$
- Gauge fix e = 0: $V_i = \int d\sigma_i \,\delta(\operatorname{Res}_{\sigma_i} P^2) \, e^{ik_i \cdot X} \dots k_i^2 = 0$ massless Integrate $X^{\mu} \Rightarrow \bar{\partial} P_{\mu} = 2\pi i \sum_i k_{i\,\mu} \,\delta^2(\sigma - \sigma_i)$
- $\Rightarrow P_{\mu}$ is meromorphic with simple poles at σ_i with residues $k_{i\mu}$.

Riemann sphere $\mathbb{CP}^1 \Rightarrow P_{\mu} = d\sigma \sum_{i} \frac{k_{i\mu}}{\sigma - \sigma_{i}} \qquad (.1)$ $\Rightarrow \operatorname{Res}_{\sigma_{i}} P^{2} = 2E_{i} = 0 \text{ are scattering equations } \Rightarrow \mathcal{A} = \int_{\mathfrak{M}_{0,n}} d\mu \mathcal{I}$

Quantisation of Ambitwistor String

- Action: $S = \frac{1}{2\pi} \int_{\Sigma} P_{\mu} \bar{\partial} X^{\mu} \frac{1}{2} e P^2$ Amplitude: $\mathcal{A} = \left\langle \prod_{i=1}^{n} V_i \right\rangle$
- Gauge fix e = 0: $V_i = \int d\sigma_i \,\delta(\operatorname{Res}_{\sigma_i} P^2) \, e^{ik_i \cdot X} \dots k_i^2 = 0$ massless Integrate $X^{\mu} \Rightarrow \bar{\partial} P_{\mu} = 2\pi i \sum_i k_{i\,\mu} \,\delta^2(\sigma - \sigma_i)$
- $\Rightarrow P_{\mu}$ is meromorphic with simple poles at σ_i with residues $k_{i\mu}$.

Riemann sphere $\mathbb{CP}^1 \Rightarrow P_{\mu} = d\sigma \sum_{i} \frac{k_{i\mu}}{\sigma - \sigma_{i}} \qquad (.1)$ $\Rightarrow \operatorname{Res}_{\sigma_{i}} P^{2} = 2E_{i} = 0 \text{ are scattering equations } \Rightarrow \mathcal{A} = \int_{\mathfrak{M}_{0,n}} d\mu \mathcal{I}$

Combine with world-sheet matter to reproduce various CHY formulas.

[also Ohmori 15; Casali, Geyer, Mason, RM, Roehrig 15]

E.g., add system of fermions \rightsquigarrow Pfaffian.

Ambitwistor Strings vs. Ordinary Strings

Ambitwistor strings:

- chiral, massless states
- $\mathcal{A} = \int (\prod_i \mathbf{d}\sigma_i \,\delta(\mathbf{E}_i)) \,\mathcal{I}_L(\sigma_i) \,\mathcal{I}_R(\sigma_i)$

Ordinary (closed) strings:

- not chiral, infinite tower of massive states
- $\mathcal{A}_{st}(\alpha') = \int (\prod_i d\sigma_i d\bar{\sigma}_i) F(|\sigma_i \sigma_j|) \mathcal{I}_L(\sigma_i) \mathcal{I}_R(\bar{\sigma}_i)$

Formulas: field theory limit is $\mathcal{A}_{st}(\alpha') \xrightarrow{\alpha' \to 0} \mathcal{A}$. Non-trivial!

[e.g. Bjerrum-Bohr, Damgaard, Tourkine, Vanhove 14, Mizera 17]

Ambitwistor Strings vs. Ordinary Strings

Ambitwistor strings:

- chiral, massless states
- $\mathcal{A} = \int (\prod_i \mathbf{d}\sigma_i \,\delta(\mathbf{E}_i)) \,\mathcal{I}_L(\sigma_i) \,\mathcal{I}_R(\sigma_i)$

Ordinary (closed) strings:

- not chiral, infinite tower of massive states
- $\mathcal{A}_{st}(\alpha') = \int (\prod_i d\sigma_i d\bar{\sigma}_i) \mathcal{F}(|\sigma_i \sigma_j|) \mathcal{I}_L(\sigma_i) \mathcal{I}_R(\bar{\sigma}_i)$

Formulas: field theory limit is $\mathcal{A}_{st}(\alpha') \xrightarrow{\alpha' \to 0} \mathcal{A}$. Non-trivial!

[e.g. Bjerrum-Bohr, Damgaard, Tourkine, Vanhove 14, Mizera 17]

Theories:

Surpriseunderstanding from $\alpha' \rightarrow \infty$ with alternative quantisation.[Siegel 15, +Huang, Yuan 16, Casali, Tourkine 16, +Herfray 17, Azevedo, Jusinskas 17, ...][Gross, Mende 88]

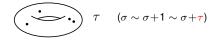
Open problem type II superstring $\xrightarrow{\alpha' \to 0}$ type II ambitwistor string.

Higher Genus

Good theory. Loop corrections?

[Adamo, Casali, Skinner 13]

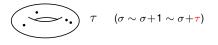
Example: one loop needs torus



Good theory. Loop corrections?

[Adamo, Casali, Skinner 13]

Example: one loop needs torus



Recall P_{μ} is meromorphic with simple poles at σ_i with residues $k_{i\mu}$.

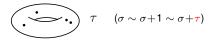
• sphere:
$$P_{\mu} = d\sigma \sum_{i} \frac{k_{i\mu}}{\sigma - \sigma_{i}}$$

• torus:
$$P_{\mu} = \ell_{\mu} \, d\sigma + \sum_{i} k_{i \, \mu} \, \varpi_{i,*}$$

Good theory. Loop corrections?

[Adamo, Casali, Skinner 13]

Example: one loop needs torus



Recall P_{μ} is meromorphic with simple poles at σ_i with residues $k_{i\mu}$.

• sphere:
$$P_{\mu} = d\sigma \sum_{i} \frac{k_{i\mu}}{\sigma - \sigma_{i}}$$

• torus:
$$P_{\mu} = \ell_{\mu} \, d\sigma + \sum_{i} \, k_{i \, \mu} \, \varpi_{i,*}$$

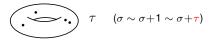
loop momentum!

• genus g: $P_{\mu} = \sum_{i=1}^{g} \ell_{\mu}^{(I)} \omega_{I} + \sum_{i=1}^{g} k_{i \, \mu} \, \varpi_{i,*}$ (g holomorphic diff's)

Good theory. Loop corrections?

[Adamo, Casali, Skinner 13]

Example: one loop needs torus



Recall P_{μ} is meromorphic with simple poles at σ_i with residues $k_{i\mu}$.

• sphere:
$$P_{\mu} = d\sigma \sum_{i} \frac{k_{i\mu}}{\sigma - \sigma_{i}}$$

• torus: $P_{\mu} = \ell_{\mu} \, d\sigma + \sum_{i} k_{i\,\mu} \, \varpi_{i,*}$ loop momentum!

• genus g: $P_{\mu} = \sum_{l=1}^{g} \ell_{\mu}^{(l)} \omega_l + \sum_{i} k_{i \, \mu} \, \varpi_{i,*}$ (g holomorphic diff's)

Scattering equations $P^2 = 0$ should localise both σ_i and parameters τ_{IJ} . Higher-genus surfaces hard (Jacobi θ functions)... Practical?

One Loop

From the Torus to the Nodal Sphere

Torus scattering equations should localise $\{\sigma_i, \tau\}$, but too hard to solve.

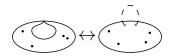
Loop integrand should be easier, like tree level.

From the Torus to the Nodal Sphere

Torus scattering equations should localise $\{\sigma_i, \tau\}$, but too hard to solve.

Loop integrand should be easier, like tree level.

Sphere-like torus? Degenerate limit $\tau \rightarrow i\infty$ ("nodal" sphere).

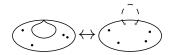


From the Torus to the Nodal Sphere

Torus scattering equations should localise $\{\sigma_i, \tau\}$, but too hard to solve.

Loop integrand should be easier, like tree level.

Sphere-like torus? Degenerate limit $\tau \rightarrow i\infty$ ("nodal" sphere).



How to get there? Residue theorem on τ integration: localises on $\tau = i\infty$.

Different approach: use elliptic parametrisation. [Cardona, Gomez 16]

Residue Argument

Torus amplitude: $\mathcal{A}^{(1)} = \int d^D \ell \int_{\mathfrak{M}_{1,n}} d\mu \mathcal{I}^{\text{torus}}$

Residue Argument

Torus amplitude: $\mathcal{A}^{(1)} = \int d^D \ell \int_{\mathfrak{M}_{1,n}} d\mu \mathcal{I}^{\text{torus}}$

 $P^2(\sigma) = 0$ on torus: • $E_i = 0$ (no poles at σ_i),

• $P^2|_{E_i=0} = u(\ell, \sigma_i, \tau) d\sigma^2 \Rightarrow u = 0$ (extra).

Measure: $d\mu \sim d\tau \,\delta(\boldsymbol{u}) \left(\prod_{i} d\sigma_{i} \,\delta(\boldsymbol{E}_{i})\right)$

View as residue integral, e.g., $\int d\sigma \, \delta(F(\sigma)) \cdots = \oint \frac{d\sigma}{2\pi i F(\sigma)} \cdots$

Residue Argument

Torus amplitude: $\mathcal{A}^{(1)} = \int d^D \ell \int_{\mathfrak{M}_{1,n}} d\mu \mathcal{I}^{\text{torus}}$

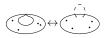
 $P^2(\sigma) = 0$ on torus: • $E_i = 0$ (no poles at σ_i),

• $P^2|_{E_i=0} = u(\ell, \sigma_i, \tau) d\sigma^2 \Rightarrow u = 0$ (extra).

Measure: $d\mu \sim d\tau \,\delta(\boldsymbol{u}) \left(\prod_{i} d\sigma_{i} \,\delta(\boldsymbol{E}_{i})\right)$

View as residue integral, e.g., $\int d\sigma \, \delta(F(\sigma)) \cdots = \oint \frac{d\sigma}{2\pi i F(\sigma)} \cdots$

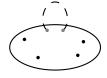
Use $q = e^{2\pi i \tau}$ and localise at q = 0 $(\tau = i\infty)$.



$$\int_{\mathfrak{M}_{1,n}} d\mu \ \mathcal{I}^{\text{torus}} \sim \oint \frac{dq \prod_i d\sigma_i}{q \ \underline{u} \ \prod_i \underline{\underline{E}_i}} \ \mathcal{I}^{\text{torus}} = -\oint \frac{dq \prod_i d\sigma_i}{\underline{q} \ u \ \prod_i \underline{\underline{E}_i}} \ \mathcal{I}^{\text{torus}} = -\left[\oint \frac{\prod_i d\sigma_i}{u \ \prod_i \underline{\underline{E}_i}} \ \mathcal{I}^{\text{torus}}\right]_{q=0}$$

New One-Loop Formula

Final result:
$$\mathcal{A}^{(1)} = \int d^D \ell \frac{1}{\ell^2} \int_{\mathfrak{M}_{0,n+2}} d\mu^{(1)} \mathcal{I}^{(1)}$$



Like tree level, but now for one-loop integrand!

• two new "particles": loop momentum insertions $\pm \ell$

•
$$P_{\mu} = d\sigma \left(\frac{\ell_{\mu}}{\sigma - \sigma_{+\ell}} + \frac{-\ell_{\mu}}{\sigma - \sigma_{-\ell}} + \sum_{i} \frac{k_{i\mu}}{\sigma - \sigma_{i}} \right) = \ell_{\mu} \omega + d\sigma \sum_{i} \frac{k_{i\mu}}{\sigma - \sigma_{i}}$$

• $\mathcal{I}^{(1)} = \lim_{\tau \to i\infty} \mathcal{I}^{\text{torus}}$

• one-loop scattering equations depend on ℓ_{μ}

$$P^2 - \ell^2 \omega^2 = 0 \quad \Leftrightarrow \quad P^2 - \ell^2 \omega^2$$
 has no poles at σ_i, σ_{\pm}

New Formalism

CHY-type expression for loop integrand:

$$\mathcal{A}^{(1)} = \int d^D \ell \; rac{1}{\ell^2} \; \int_{\mathfrak{M}_{0,n+2}} d\mu^{(1)} \; \mathcal{I}^{(1)}$$

Previous derivation applied to "type II supergravity in 10D". More general?

- Higher genus is very restrictive (modular invariance).
- Perturbative QFT less restricted than a string theory!

New Formalism

CHY-type expression for loop integrand:

$$\mathcal{A}^{(1)} = \int d^D \ell \; rac{1}{\ell^2} \; \int_{\mathfrak{M}_{0,n+2}} d\mu^{(1)} \; \mathcal{I}^{(1)}$$

Previous derivation applied to "type II supergravity in 10D". More general?

- Higher genus is very restrictive (modular invariance).
- Perturbative QFT less restricted than a string theory!

Proposal: generic loop expansion is nodal expansion on sphere.

Look directly for $\mathcal{I}^{(1)}$ in nodal sphere, in any *D*.

[Geyer, Mason, RM, Tourkine 15]

Yang-Mills:
$$\mathcal{I}_{YM}^{(1)} = \mathcal{I}_{kin}^{(1)}(\epsilon) \, \mathcal{I}_{colour}^{(1)}$$

Double copy!

Gravity:
$$\mathcal{I}_{\text{Grav}}^{(1)} = \mathcal{I}_{\text{kin}}^{(1)}(\epsilon) \, \mathcal{I}_{\text{kin}}^{(1)}(\tilde{\epsilon})$$

[Geyer, Mason, RM, Tourkine 15]

Gravity: $\mathcal{I}_{\text{Grav}}^{(1)} = \mathcal{I}_{\text{kin}}^{(1)}(\epsilon) \mathcal{I}_{\text{kin}}^{(1)}(\tilde{\epsilon})$

Yang-Mills:
$$\mathcal{I}_{YM}^{(1)} = \mathcal{I}_{kin}^{(1)}(\epsilon) \, \mathcal{I}_{colour}^{(1)}$$

Double copy!

• Susy: $\mathcal{I}_{kin}^{(1)}(\epsilon) = \text{vector} + \text{fermion in the loop}$

[Geyer, Mason, RM, Tourkine 15]

Gravity: $\mathcal{I}_{\text{Grav}}^{(1)} = \mathcal{I}_{\text{kin}}^{(1)}(\epsilon) \mathcal{I}_{\text{kin}}^{(1)}(\tilde{\epsilon})$

Yang-Mills: $\mathcal{I}_{YM}^{(1)} = \mathcal{I}_{kin}^{(1)}(\epsilon) \mathcal{I}_{colour}^{(1)}$

Double copy!

- Susy: $\mathcal{I}_{kin}^{(1)}(\epsilon) = \text{vector} + \text{fermion in the loop}$
- Non-susy: $\mathcal{I}_{kin}^{(1)}(\epsilon) = \text{only vector} = \sum_{r} \mathsf{Pf}' M(\epsilon_i, \epsilon_+^{(r)}, \epsilon_-^{(r)})$ (similar to tree level)

Can write "vertex operator" for node. [Roehrig, Skinner 17]

[Geyer, Mason, RM, Tourkine 15]

Gravity: $\mathcal{I}_{\text{Grav}}^{(1)} = \mathcal{I}_{\text{kin}}^{(1)}(\epsilon) \mathcal{I}_{\text{kin}}^{(1)}(\tilde{\epsilon})$

Yang-Mills:
$$\mathcal{I}_{YM}^{(1)} = \mathcal{I}_{kin}^{(1)}(\epsilon) \, \mathcal{I}_{colour}^{(1)}$$

Double copy!

- Susy: $\mathcal{I}_{kin}^{(1)}(\epsilon) = \text{vector} + \text{fermion in the loop}$
- Non-susy: $\mathcal{I}_{kin}^{(1)}(\epsilon) = \text{only vector} = \sum_{r} \mathsf{Pf}' M(\epsilon_i, \epsilon_+^{(r)}, \epsilon_-^{(r)})$ (similar to tree level)

Can write "vertex operator" for node. [Roehrig, Skinner 17]

New formula:
$$\mathcal{A}^{(1)} = \int d^D \ell \, \frac{1}{\ell^2} \, \Im(\ell) \,, \qquad \Im(\ell) = \int_{\mathfrak{M}_{0,n+2}} d\mu^{(1)} \, \mathcal{I}^{(1)}$$

Explicit integrand $\Im(\ell)$? No need to solve the scattering equations. [Baadsgaard, Bourjaily, Bjerrum-Bohr, Damgaard, Feng 15; He, Yuan 15, ...]

New Propagator Structure

New formula: $\mathcal{A}^{(1)} = \int d^D \ell \frac{1}{\ell^2} \int_{\mathfrak{M}_{0,n+2}} d\mu^{(1)} \mathcal{I}^{(1)}$ Puzzle! Only one $\frac{1}{\ell^2}$, rest depends only on $\ell \cdot K, \ \ell \cdot \epsilon \ldots$

New Propagator Structure

New formula:
$$\mathcal{A}^{(1)} = \int d^D \ell \frac{1}{\ell^2} \int_{\mathfrak{M}_{0,n+2}} d\mu^{(1)} \mathcal{I}^{(1)}$$

Puzzle! Only one $\frac{1}{\ell^2}$, rest depends only on $\ell \cdot K$, $\ell \cdot \epsilon$...
Shifted Integrand
• use $\frac{1}{\prod_i D_i} = \sum_i \frac{1}{D_i \prod_{j \neq i} (D_j - D_i)}, \quad D_i = (\ell + K_i)^2$
• shift each term $\frac{1}{D_i} \to \frac{1}{\ell^2}$
Bubble: $\frac{1}{\ell^2 (\ell + K)^2} = \frac{1}{\ell^2 (2\ell \cdot K + K^2)} + \frac{1}{(\ell + K)^2 (-2\ell \cdot K - K^2)}$
 $\stackrel{\text{shift}}{=} \frac{1}{\ell^2} \left[\frac{1}{2\ell \cdot K + K^2} + \frac{1}{-2\ell \cdot K + K^2} \right]$

New Propagator Structure

New formula:
$$\mathcal{A}^{(1)} = \int d^{D}\ell \frac{1}{\ell^{2}} \int_{\mathfrak{M}_{0,n+2}} d\mu^{(1)} \mathcal{I}^{(1)}$$
Puzzle! Only one $\frac{1}{\ell^{2}}$, rest depends only on $\ell \cdot K$, $\ell \cdot \epsilon$...
Puzzle! Only one $\frac{1}{\ell^{2}}$, rest depends only on $\ell \cdot K$, $\ell \cdot \epsilon$...
Shifted Integrand • use $\frac{1}{\prod_{i} D_{i}} = \sum_{i} \frac{1}{D_{i} \prod_{j \neq i} (D_{j} - D_{i})}, \quad D_{i} = (\ell + K_{i})^{2}$
• shift each term $\frac{1}{D_{i}} \rightarrow \frac{1}{\ell^{2}}$

Bubble: $\frac{1}{\ell^{2}(\ell + K)^{2}} = \frac{1}{\ell^{2}(2\ell \cdot K + K^{2})} + \frac{1}{(\ell + K)^{2}(-2\ell \cdot K - K^{2})}$

$$\stackrel{\text{shift}}{\Rightarrow} \frac{1}{\ell^{2}} \left[\frac{1}{2\ell \cdot K + K^{2}} + \frac{1}{-2\ell \cdot K + K^{2}} \right]$$

Democratic placement of ℓ in "canonical" integrand.

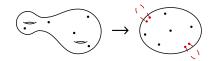
Good for obtaining loop integrands from trees! "Q-cuts" [Baadsga Consequences for colour-kinematics duality. [He, Schlotterer

[Baadsgaard et al 15, CHY 15]

[He, Schlotterer 16-17, Geyer, RM 17]

Status at Two Loops

Idea:



Done

- heuristic: 4-pts in SUGRA, SYM [Geyer, Mason, RM, Tourkine 16] [genus 2: Adamo, Casali 15]
- detailed: n-pts in SUGRA, SYM [Geyer, RM 18]

genus 2 follows closely superstring [D'Hoker, Phong 01, 05]

In progress

n-pts in non-SUSY gravity, YM

Genus 2

There are 2 holomorphic differentials ω_I , I = 1, 2.

Pick homology basis:

Normalise ω_1 with A-cycles:

$$\oint_{A_I} \omega_J = \delta_{IJ}$$

Period matrix: $\tau_{IJ} = \oint_{R_i} \omega_J = \tau_{JI} \longrightarrow 3$ modular parameters

 $q_{11} = e^{i\pi au_{11}} , \ q_{22} = e^{i\pi au_{22}} , \ q_{12} = e^{2i\pi au_{12}}$

Bi-nodal sphere: $q_{11} = q_{22} = 0$

$$q_{11} = q_{22} = 0$$

ecall genus 1:
$$q = 0$$

Solution for
$$P_{\mu}$$
: $P_{\mu} = \ell_{1 \mu} \omega_1 + \ell_{2 \mu} \omega_2 + \sum_i k_{i \mu} \varpi_{i,*}$

 $P^2(\sigma) = 0$ at genus 2: • $E_i = 0$ (no poles at σ_i),

•
$$P^2|_{E_i=0} = u_{IJ} \omega_I \omega_J \Rightarrow u_{IJ} = 0$$
 (3 extra).

Genus-2 scattering equations would fix $\{\sigma_i, q_{IJ}\}$ but too hard to solve.

Solution for
$$P_{\mu}$$
: $P_{\mu} = \ell_{1 \mu} \omega_1 + \ell_{2 \mu} \omega_2 + \sum_i k_{i \mu} \varpi_{i,*}$

 $P^2(\sigma) = 0$ at genus 2: • $E_i = 0$ (no poles at σ_i),

•
$$P^2|_{E_i=0} = u_{IJ} \omega_I \omega_J \Rightarrow u_{IJ} = 0$$
 (3 extra).

Genus-2 scattering equations would fix $\{\sigma_i, q_{IJ}\}$ but too hard to solve.

Residue argument

Genus 1: from u = 0 into q = 0.

Genus 2: from $u_{11} = u_{22} = 0$ into $q_{11} = q_{22} = 0$. (more subtle)

Solution for
$$P_{\mu}$$
: $P_{\mu} = \ell_{1 \mu} \omega_1 + \ell_{2 \mu} \omega_2 + \sum_i k_{i \mu} \varpi_{i,*}$

 $P^2(\sigma) = 0$ at genus 2: • $E_i = 0$ (no poles at σ_i),

•
$$P^2|_{E_i=0} = u_{IJ} \omega_I \omega_J \Rightarrow u_{IJ} = 0$$
 (3 extra).

Genus-2 scattering equations would fix $\{\sigma_i, q_{IJ}\}$ but too hard to solve.

Residue argument

Ricardo Monteiro (Queen Marv)

Genus 1: from u = 0 into q = 0.

Genus 2: from $u_{11} = u_{22} = 0$ into $q_{11} = q_{22} = 0$. (more subtle)

Amplitude:
$$\mathcal{A}^{(2)} = \int d^D \ell_1 d^D \ell_2 \int_{\mathfrak{M}_{2,n}} d\mu \ \mathcal{I}^{\text{genus-2}} = \int \frac{d^D \ell_1 d^D \ell_2}{(\ell_1)^2 (\ell_2)^2} \int_{\mathfrak{M}_{0,n+4}} d\mu^{(2)} \ \mathcal{I}^{(2)}$$

Scattering Amp, from Ambitwistor Strings

From Genus 2 to the Bi-Nodal Sphere

New formula:
$$\mathcal{A}^{(2)} = \int \frac{d^D \ell_1 d^D \ell_2}{(\ell_1)^2 (\ell_2)^2} \int_{\mathfrak{M}_{0,n+4}} d\mu^{(2)} \mathcal{I}^{(2)}$$

Subtle points of residue argument:

- leftover equation of type $u_{lJ} = 0$: $u_{11} + u_{22} + u_{12} = 0$
 - $\Rightarrow P^2 \ell_1^2 \omega_1^2 \ell_1^2 \omega_1^2 + (\ell_1^2 + \ell_2^2) \omega_1 \omega_2 = 0 \quad \text{(no poles at } \sigma_i, \sigma_{1\pm}, \sigma_{2\pm})$

From Genus 2 to the Bi-Nodal Sphere

New formula:
$$\mathcal{A}^{(2)} = \int \frac{d^D \ell_1 d^D \ell_2}{(\ell_1)^2 (\ell_2)^2} \int_{\mathfrak{M}_{0,n+4}} d\mu^{(2)} \mathcal{I}^{(2)}$$

Subtle points of residue argument:

- leftover equation of type $u_{lJ} = 0$: $u_{11} + u_{22} + u_{12} = 0$
 - $\Rightarrow P^2 \ell_1^2 \,\omega_1^2 \ell_1^2 \,\omega_1^2 + (\ell_1^2 + \ell_2^2) \,\omega_1 \,\omega_2 = 0 \quad \text{(no poles at } \sigma_i \,, \, \sigma_{1\pm} \,, \, \sigma_{2\pm})$
- $\mathcal{I}^{(2)} = \lim_{q_{11}, q_{22} \to 0} \mathcal{I}^{\text{genus-2}}$ for particular form of $\mathcal{I}^{\text{genus-2}}$

From Genus 2 to the Bi-Nodal Sphere

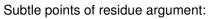
New formula:
$$\mathcal{A}^{(2)} = \int \frac{d^D \ell_1 d^D \ell_2}{(\ell_1)^2 (\ell_2)^2} \int_{\mathfrak{M}_{0,n+4}} d\mu^{(2)} \mathcal{I}^{(2)}$$

Subtle points of residue argument:

- leftover equation of type $u_{IJ} = 0$: $u_{11} + u_{22} + u_{12} = 0$
 - $\Rightarrow P^2 \ell_1^2 \,\omega_1^2 \ell_1^2 \,\omega_1^2 + (\ell_1^2 + \ell_2^2) \,\omega_1 \,\omega_2 = 0 \quad \text{(no poles at } \sigma_i \,, \, \sigma_{1\pm} \,, \, \sigma_{2\pm})$
- $\mathcal{I}^{(2)} = \lim_{q_{11}, q_{22} \to 0} \mathcal{I}^{\text{genus-2}}$ for particular form of $\mathcal{I}^{\text{genus-2}}$
- leftover q_{12} becomes cross ratio of $\sigma_{1\pm}$, $\sigma_{2\pm}$. Unrestricted range:

$$\int_{|q_{12}| \le 1} \cdots = \int_{|q_{12}| \le 1} \left(\frac{1}{1 - q_{12}} - \frac{q_{12}}{1 - q_{12}} \right) \cdots \stackrel{\text{modular}}{=} \int_{q_{12}} \frac{1}{1 - q_{12}} \cdots$$

New formula:
$$\mathcal{A}^{(2)} = \int \frac{d^D \ell_1 d^D \ell_2}{(\ell_1)^2 (\ell_2)^2} \int_{\mathfrak{M}_{0,n+4}} d\mu^{(2)} \mathcal{I}^{(2)}$$



- leftover equation of type $u_{lJ} = 0$: $u_{11} + u_{22} + u_{12} = 0$
 - $\Rightarrow P^2 \ell_1^2 \,\omega_1^2 \ell_1^2 \,\omega_1^2 + (\ell_1^2 + \ell_2^2) \,\omega_1 \,\omega_2 = 0 \quad \text{(no poles at } \sigma_i \,, \, \sigma_{1\pm} \,, \, \sigma_{2\pm})$
- $\mathcal{I}^{(2)} = \lim_{q_{11}, q_{22} \to 0} \mathcal{I}^{\text{genus-2}}$ for particular form of $\mathcal{I}^{\text{genus-2}}$
- leftover q_{12} becomes cross ratio of $\sigma_{1\pm}$, $\sigma_{2\pm}$. Unrestricted range:

$$\int_{|q_{12}| \le 1} \cdots = \int_{|q_{12}| \le 1} \left(\frac{1}{1 - q_{12}} - \frac{q_{12}}{1 - q_{12}} \right) \cdots \stackrel{\text{modular}}{=} \int_{q_{12}} \frac{1}{1 - q_{12}} \cdots$$

$$\mathcal{I}_{\text{SUGRA}}^{(2)} = \frac{1}{1 - q_{12}} \, \mathcal{I}_{\text{kin}}^{(2)}(\epsilon) \, \, \mathcal{I}_{\text{kin}}^{(2)}(\tilde{\epsilon}) \quad \rightsquigarrow \quad \mathcal{I}_{\text{SYM}}^{(2)} = \mathcal{I}_{\text{kin}}^{(2)}(\epsilon) \, \, \mathcal{I}_{\text{colour}}^{\prime(2)}(\epsilon) \, \, \mathcal{$$

Get $\mathcal{I}_{colour}^{\prime(2)}$ from current algebra on bi-nodal sphere (cf. heterotic string).

All Genus Plausibility

genus gdim $_{\mathbb{C}}(\mathfrak{M}_{g,n}) = n + 3g - 3$ degenerations-gg-nodal spheredim $_{\mathbb{C}}(\mathfrak{M}_{0,n+2g}) = (n+2g) - 3$

Conclusion

Conclusion

- Ambitwistor strings describe perturbative QFTs.
- Formulas for YM and gravity, SUSY/no-SUSY.

loop expansion = nodal expansion

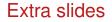
Conclusion

- Ambitwistor strings describe perturbative QFTs.
- Formulas for YM and gravity, SUSY/no-SUSY.

loop expansion = nodal expansion

Many open questions

- All-loop story?
- Double copy from gauge theory to gravity?
- 4D formalism? Efficient manipulation, inc. loop integration?
- Beyond scattering amplitudes? Beyond perturbation theory?
- Insights into string theory?



KLT Relations: String Theory Origin

[Kawai, Lewellen, Tye '86]

Vertex operators:
$$V_{\text{closed}}(\varepsilon^{\mu\nu} = \epsilon^{\mu}\tilde{\epsilon}^{\nu}) \sim V_{\text{open}}(\epsilon^{\mu})\bar{V}_{\text{open}}(\tilde{\epsilon}^{\nu})$$
 $s_{ij} = (k_i + k_j)^2$
 $\mathcal{A}_3^{\text{grav}} = \mathcal{A}^{\text{YM}}(123)\tilde{\mathcal{A}}^{\text{YM}}(123)$ $\mathcal{A}_4^{\text{grav}} = \frac{\sin \pi \alpha' s_{12}}{\pi \alpha'} \mathcal{A}^{\text{YM}}(1234)\tilde{\mathcal{A}}^{\text{YM}}(1243)$

Field theory limit is $\alpha' \rightarrow 0$.

KLT Relations: String Theory Origin

$$\text{Vertex operators: } V_{\text{closed}}(\varepsilon^{\mu\nu} = \epsilon^{\mu}\tilde{\epsilon}^{\nu}) \sim V_{\text{open}}(\epsilon^{\mu}) \bar{V}_{\text{open}}(\tilde{\epsilon}^{\nu}) \qquad \qquad s_{ij} = (k_i + k_j)^2$$

$$\mathcal{A}_{3}^{grav} = A^{YM}(123) \, \tilde{A}^{YM}(123) \qquad \mathcal{A}_{4}^{grav} = \frac{\sin \pi \alpha' s_{12}}{\pi \alpha'} \, A^{YM}(1234) \, \tilde{A}^{YM}(1243)$$

Field theory limit is $\alpha' \rightarrow 0$.

In general (tree level)

[Bern, Dixon, Perelstein, Rozowsky '98]

$$\mathcal{A}_n^{\text{grav}} = \sum_{P_n, P_n'} A^{\text{YM}}(P_n) \ S_{\text{KLT}}[P_n, P_n'] \ \tilde{A}^{\text{YM}}(P_n') \qquad S_{\text{KLT}} \sim s_{ij}^{n-3}$$

Useful at loop level via unitarity cuts.

KLT Relations: String Theory Origin

$$\text{Vertex operators: } V_{\text{closed}}(\varepsilon^{\mu\nu} = \epsilon^{\mu}\tilde{\epsilon}^{\nu}) \sim V_{\text{open}}(\epsilon^{\mu}) \bar{V}_{\text{open}}(\tilde{\epsilon}^{\nu}) \qquad \qquad s_{ij} = (\kappa_i + \kappa_j)^2$$

$$\mathcal{A}_{3}^{grav} = A^{YM}(123) \, \tilde{A}^{YM}(123) \qquad \mathcal{A}_{4}^{grav} = \frac{\sin \pi \alpha' s_{12}}{\pi \alpha'} \, A^{YM}(1234) \, \tilde{A}^{YM}(1243)$$

Field theory limit is $\alpha' \rightarrow 0$.

In general (tree level)

[Bern, Dixon, Perelstein, Rozowsky '98]

$$\mathcal{A}_n^{\text{grav}} = \sum_{P_n, P_n'} A^{\text{YM}}(P_n) \quad S_{\text{KLT}}[P_n, P_n'] \quad \tilde{A}^{\text{YM}}(P_n') \qquad S_{\text{KLT}} \sim s_{ij}^{n-3}$$

Useful at loop level via unitarity cuts.

Recall YM colour decomposition: colour traces or colour factors.

 $\mathcal{A}_{n}^{\mathsf{YM}} = \sum_{\text{non cyclic}} A^{\mathsf{YM}}(1, 2, \dots, n) \operatorname{tr}(T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}}) = \sum_{\alpha \in \operatorname{cubic}} N_{\alpha} c_{\alpha}$ with $c_{\alpha} = f^{abc} f^{\cdots} \cdots f^{\cdots}, f^{abc} = \operatorname{tr}([T^{a}, T^{b}] T^{c}),$ but Jacobi identities: $c_{\alpha} \pm c_{\beta} \pm c_{\gamma} = 0$

Summary of Double Copy

$$\mathcal{A}_{\text{grav}}(\varepsilon_i^{\mu\nu}) \sim (\text{prop})^{-1} \left. \mathcal{A}_{\text{YM}}(\epsilon_i^{\mu}) \times \mathcal{A}_{\text{YM}}(\tilde{\epsilon}_i^{\nu}) \right|_{\text{colour stripped}}$$

KLT relations

$$\mathcal{A}_{\text{grav}} = \sum_{\mathcal{P}_n, \mathcal{P}'_n} \mathcal{A}_{\text{YM}}(\epsilon, \mathcal{P}_n) \ \mathcal{S}_{\text{KLT}}[\mathcal{P}_n, \mathcal{P}_n^{'}] \ \mathcal{A}_{\text{YM}}(\tilde{\epsilon}, \mathcal{P}_n^{'})$$

BCJ double copy

$$\mathcal{A}_{\mathsf{YM}} = \sum_{lpha \in \operatorname{cubic}} rac{n_{lpha}(\epsilon) \, \boldsymbol{c}_{lpha}}{D_{lpha}} \qquad \mathcal{A}_{\mathsf{grav}} = \sum_{lpha \in \operatorname{cubic}} rac{n_{lpha}(\epsilon) \, n_{lpha}(\tilde{\epsilon})}{D_{lpha}}$$

CHY formulas

$$\mathcal{A} = \int \boldsymbol{d} \mu \, \mathcal{I} \qquad \mathcal{I}_{\mathsf{YM}} = \mathrm{Pf}' \boldsymbol{M}(\epsilon) \times \mathcal{C} \qquad \mathcal{I}_{\mathsf{grav}} = \mathrm{Pf}' \boldsymbol{M}(\epsilon) \times \mathrm{Pf}' \boldsymbol{M}(\tilde{\epsilon})$$