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Scattering Amplitudes

Calculable with Feynman diagrams:

good: general, clear physical picture.

bad: inefficient, symmetries obscured.

Every theoretical physicist who is any good knows
six or seven different theoretical representations

for exactly the same physics.

Modern approaches:

analyticity, kinematic variables (e.g. on-shell), symmetries.

relations between theories (e.g. gravity vs gauge theory).

new formulations of QFTs.
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Why Strings?

QFT from low-energy string theory: alternative to Feynman expansion.
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particle scattering string scattering
(many Feynman diagrams) (one “world-sheet”, 2D CFT)

Old idea: calculate QFT amplitudes from string theory. [Green, Schwarz, Brink 82]

Insights: UV divergences, algebraic structure,
Insights” gravity (closed strings) v.s. gauge theory (open strings), . . .

Hard: higher loop corrections (simpler at low energy), dropping susy.
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World-sheet Models of (Massless) QFTs

String theory: field theory is α′ → 0, massive modes decouple, m2
n = cn/α

′.

2

I. INTRODUCTION

FIG. 1. initial
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↵0!0�!+ tree + 1-loop + . . .

a a

+ . . . =+ tree + 1-loop + . . .

Target space is spacetime.

Is there truncated version just for QFT?

Ambitwistor strings: no α′, only massless states.

2

I. INTRODUCTION

FIG. 1. initial

a a

+ . . .
↵0!0�!+ tree + 1-loop + . . .

a a

+ . . . =+ tree + 1-loop + . . .

Target space is space of (complex) null geodesics = ambitwistor space.

Formulas for amplitudes based on scattering equations.

Ricardo Monteiro (Queen Mary) Scattering Amp. from Ambitwistor Strings 4 / 32



World-sheet Models of (Massless) QFTs

String theory: field theory is α′ → 0, massive modes decouple, m2
n = cn/α

′.

2

I. INTRODUCTION

FIG. 1. initial

a a

+ . . .
↵0!0�!+ tree + 1-loop + . . .

a a

+ . . . =+ tree + 1-loop + . . .

Target space is spacetime.

Is there truncated version just for QFT?

Ambitwistor strings: no α′, only massless states.

2

I. INTRODUCTION

FIG. 1. initial

a a

+ . . .
↵0!0�!+ tree + 1-loop + . . .

a a

+ . . . =+ tree + 1-loop + . . .

Target space is space of (complex) null geodesics = ambitwistor space.

Formulas for amplitudes based on scattering equations.

Ricardo Monteiro (Queen Mary) Scattering Amp. from Ambitwistor Strings 4 / 32



Worldsheet Models ←→ Scattering Equations

Old story

Twistor string theory [Witten 03] −→ RSV formula [Roiban, Spradlin, Volovich 04]

D = 4. SYM, SUGRA [Hodges, Cachazo, Geyer, Skinner, Mason 12].

Only tree level (unwanted states). [Berkovitz, Witten 04]

New story

Ambitwistor string theory [Mason, Skinner 13] ←− CHY formulas [Cachazo, He, Yuan 13-14]

Any D. Many theories of massless particles.

Loop-level progress! Unwanted states absent or projected out.
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Outline

Tree level

One loop

Two loops
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Tree Level

Tree Level
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Tree Level

Scattering Equations [Cachazo, He, Yuan ’13]

[Previous history: Fairlie, Roberts ’72, Gross, Mende ’88, Witten ’04]

Consider n massless particles, k2
i = 0, i = 1, . . . ,n,

n∑

i=1

ki = 0 .

Ei =
∑

j 6=i

ki · kj

σi − σj
= 0, ∀i

kinematic invariants sij = (ki + kj )
2 = 2 ki · kj −→ points σi ∈ CP1

.

SL(2,C) invariance, σ → Aσ + B
C σ + D

(n − 3)! solutions σ(A)
i .

factorisation: (k1 + . . .+ km)2 → 0 ←→ σ1, . . . , σm → σ?

[Dolan, Goddard 13]
1
m
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Tree Level

CHY Formulas [Cachazo, He, Yuan ’13]

Tree-level scattering amplitude: A =

∫

M0,n

dµ I

Measure is universal.

M0,n = moduli space of sphere with n marked points
= space of {σi}, up to SL(2,C) transf.

dµ ∼∏i dσi δ(Ei ) localised on solutions to scattering equations

I(σi ) specifies the theory.

Direct evaluation: A =

(n−3)!∑

A=1

I
J

∣∣∣
σi =σ

(A)
i

Scattering equations hard to solve, but no need for that!
[Dolan, Goddard; Cachazo, Gomez; Baadsgaard at al; Huang et al; Sogaard, Zhang; Cardona, Kalousios; Fu et al; . . .]
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Tree Level

Examples: Yang-Mills theory and Gravity [Cachazo, He, Yuan ’13]

Ingredients in Yang-Mills (gluon) eik·xεµT a , Gravity (graviton, . . . ) eik·xεµν :

kinematics (εµi , k
µ
i ): pfaffian of matrix Pf ′M(εµi , k

µ
i , σi ) .

kinematics (εµi , k
µ
i ): gauge invariant (εµi → εµi + α kµi ) on Ei = 0.

colour (T ai ): C(ai , σi ) =
tr(T a1 T a2 · · ·T an )

(σ1 − σ2)(σ2 − σ3) · · · (σn − σ1)
+ . . . “Parke-Taylor”

Amplitudes are A =

∫

M0,n

dµ I . Clear n-particle structure in D dimensions!

Yang-Mills theory: IYM = Pf ′M(εi )× C(ai )

Gravity ( εµνi = εµi ε̃
ν
i ): IGrav = Pf ′M(εi )× Pf ′M(ε̃i )

⇒ Gravity ∼ YM2
cf. Kawai-Lewellen-Tye relations ’86

Bern-Carrasco-Johansson relations ’08
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Tree Level

Other Examples

Many more theories
of massless particles!

e.g. Gravity-Yang-Mills,
Born-Infeld, NLSM,. . .
[Cachazo, He, Yuan 14]

Lessons:

relations between theories

messy Feynman rules 6= messy amplitudes
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Tree Level

Geometry of Scattering Equations

SL(2,C) invariant differential on CP1: Pµ(σ) = dσ
n∑

i=1

ki µ

σ − σi

1

n
Scattering equations:

P2(σ) = 0 ⇔ Resσi P
2 = 2Ei =

∑

j 6=i

2 ki · kj

σi − σj
= 0

Theory on sphere based on Pµ?

.Twistor string theory [Witten 03] −→ CHY predecessor [Roiban, Spradlin, Volovich 04]

4D Yang-Mills theory.

Any D? Twistor Ambitwistor space [Mason, Skinner 13]

= space of null geodesics of (complexified) spacetime.
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Tree Level

Strings in Ambitwistor Space [Mason, Skinner 13]

Worldline action for massless particle:

Sp =

∫

γ

pµ dxµ − 1
2

e p2 d = dλ∂λ

worldline γ
e enforces p2 = 0 (m2 = 0).

gauge freedom: δxµ = αpµ, δpν = 0, δe = dα.

Chiral complexification: “string” Σ at genus 0

S =
1

2π

∫

Σ

Pµ ∂̄ Xµ − 1
2

e P2 ∂̄ = d σ̄ ∂σ̄

Pµ = dσ pµ(σ) .

e enforces P2 = 0, same gauge freedom (dα ∂̄α) .

Ambitwistor space: (Xµ,Pν) with P2 = 0, (Xµ,Pν) ∼ (Xµ + αPµ,Pν).

Ricardo Monteiro (Queen Mary) Scattering Amp. from Ambitwistor Strings 13 / 32



Tree Level

Strings in Ambitwistor Space [Mason, Skinner 13]

Worldline action for massless particle:

Sp =

∫

γ

pµ dxµ − 1
2

e p2 d = dλ∂λ

worldline γ
e enforces p2 = 0 (m2 = 0).

gauge freedom: δxµ = αpµ, δpν = 0, δe = dα.

Chiral complexification: “string” Σ at genus 0

S =
1

2π

∫

Σ

Pµ ∂̄ Xµ − 1
2

e P2 ∂̄ = d σ̄ ∂σ̄

Pµ = dσ pµ(σ) .

e enforces P2 = 0, same gauge freedom (dα ∂̄α) .

Ambitwistor space: (Xµ,Pν) with P2 = 0, (Xµ,Pν) ∼ (Xµ + αPµ,Pν).

Ricardo Monteiro (Queen Mary) Scattering Amp. from Ambitwistor Strings 13 / 32



Tree Level

Quantisation of Ambitwistor String [Mason, Skinner 13]

Action: S = 1
2π

∫
Σ

Pµ ∂̄ Xµ − 1
2 e P2 Amplitude: A =

〈
n∏

i=1

Vi

〉

Gauge fix e = 0: Vi =
∫

dσi δ(Resσi P
2) eiki ·X . . . k2

i = 0 massless

Integrate Xµ ⇒ ∂̄Pµ = 2πi
∑

i ki µ δ
2(σ − σi )

⇒ Pµ is meromorphic with simple poles at σi with residues kiµ.

Riemann sphere CP1 ⇒ Pµ = dσ
∑

i

ki µ

σ − σi

1

n

⇒ Resσi P
2 = 2Ei = 0 are scattering equations ⇒ A =

∫

M0,n

dµ I

Combine with world-sheet matter to reproduce various CHY formulas.
[also Ohmori 15; Casali, Geyer, Mason, RM, Roehrig 15]

E.g., add system of fermions  Pfaffian.
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Σ

Pµ ∂̄ Xµ − 1
2 e P2 Amplitude: A =

〈
n∏

i=1

Vi

〉

Gauge fix e = 0: Vi =
∫

dσi δ(Resσi P
2) eiki ·X . . . k2

i = 0 massless

Integrate Xµ ⇒ ∂̄Pµ = 2πi
∑

i ki µ δ
2(σ − σi )

⇒ Pµ is meromorphic with simple poles at σi with residues kiµ.

Riemann sphere CP1 ⇒ Pµ = dσ
∑

i

ki µ

σ − σi

1

n

⇒ Resσi P
2 = 2Ei = 0 are scattering equations ⇒ A =

∫

M0,n

dµ I

Combine with world-sheet matter to reproduce various CHY formulas.
[also Ohmori 15; Casali, Geyer, Mason, RM, Roehrig 15]

E.g., add system of fermions  Pfaffian.
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Tree Level

Ambitwistor Strings vs. Ordinary Strings
Ambitwistor strings:

chiral, massless states

A =
∫

(
∏

i dσi δ(Ei )) IL(σi ) IR(σi )

Ordinary (closed) strings:

not chiral, infinite tower of massive states

Ast(α
′) =

∫
(
∏

i dσid σ̄i )F (|σi − σj |) IL(σi ) IR(σ̄i )

Formulas: field theory limit is Ast(α
′)

α′→0−→ A . Non-trivial!
[e.g. Bjerrum-Bohr, Damgaard, Tourkine, Vanhove 14, Mizera 17]

Theories:

Surprise understanding from α′ →∞ with alternative quantisation.
[Siegel 15, +Huang, Yuan 16, Casali, Tourkine 16, +Herfray 17, Azevedo, Jusinskas 17, . . . ] [Gross, Mende 88]

Open problem type II superstring α′→0−→ type II ambitwistor string.
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Higher Genus

Higher Genus
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Higher Genus

Geometry at Higher Genus

Good theory. Loop corrections? [Adamo, Casali, Skinner 13]

Example: one loop needs torus τ (σ ∼ σ+1 ∼ σ+τ )

1
2- 1

2

⌧ $

Recall Pµ is meromorphic with simple poles at σi with residues kiµ .

sphere: Pµ = dσ
∑

i

ki µ

σ − σi

torus: Pµ = `µ dσ +
∑

i

ki µ$i,∗ loop momentum!

genus g: Pµ =

g∑

I=1

`(I)
µ ωI +

∑

i

ki µ$i,∗ (g holomorphic diff’s)

Scattering equations P2 = 0 should localise both σi and parameters τIJ .

Higher-genus surfaces hard (Jacobi θ functions). . . Practical?
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One Loop

One Loop
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One Loop

From the Torus to the Nodal Sphere [Geyer, Mason, RM, Tourkine 15]

Torus scattering equations should localise {σi , τ} , but too hard to solve.

Loop integrand should be easier, like tree level.

Sphere-like torus? Degenerate limit τ → i∞ (“nodal” sphere).

1
2- 1

2

⌧ $

How to get there? Residue theorem on τ integration: localises on τ = i∞ .

2

I. INTRODUCTION

FIG. 1. initial

a a

+ . . .
↵0!0�!+ tree + 1-loop + . . .

a a

+ . . . =+ tree + 1-loop + . . .

a a

+ . . . �!+ tree + 1-loop + . . .

a a

= tree

; = 1-loop

Different approach: use elliptic parametrisation. [Cardona, Gomez 16]
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One Loop

Residue Argument

Torus amplitude: A(1) =

∫
dD`

∫

M1,n

dµ I torus modulus τ

1
2- 1

2

⌧ $

P2(σ) = 0 on torus: • Ei = 0 (no poles at σi ),

• P2|Ei =0 = u(`, σi , τ) dσ2 ⇒ u = 0 (extra).

Measure: dµ ∼ dτ δ(u) (
∏

i

dσi δ(Ei ))

View as residue integral, e.g.,
∫

dσ δ(F (σ)) · · · =

∮
dσ

2πi F (σ)
· · ·

Use q = e2πiτ and localise at q = 0 (τ = i∞) .

1
2- 1

2

⌧ $

∫
M1,n

dµ I torus ∼
∮

dq
∏

i dσi

q u
∏

i Ei
I torus = −

∮
dq

∏
i dσi

q u
∏

i Ei
I torus = −

[∮ ∏
i dσi

u
∏

i Ei
I torus

]
q=0
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One Loop

New One-Loop Formula [Geyer, Mason, RM, Tourkine 15]

Final result: A(1) =

∫
dD`

1
`2

∫

M0,n+2

dµ(1) I(1)

2

satisfies

@̄P = 2⇡i
X

i

ki�̄(z � zi)dz ,

where �̄(f(z)) := @̄ 1
2⇡if(z) = �(<f)�(=f)df(z) . Intro-

ducing ` 2 Rd to parametrise the zero-modes, and denot-
ing zij = zi � zj , our choice of solution for P (z, zi|q)
is

P = 2⇡i `dz+
X

i

ki

 
✓01(z � zi)

✓1(z � zi)
+
X

j 6=i

✓01(zij)

n ✓1(zij)

!
dz . (1)

This is meromorphic and doubly periodic in z and the
zi. The ACS version is not holomorphic and does not
factorise properly [9], while that in [8, 10] is not doubly
periodic until the loop momentum is integrated out (as in
conventional string theory), and is thus not well defined
on the elliptic curve for fixed `. Using (1), the scattering
equations are

Reszi
P 2(z) = 2ki · P (zi) = 0 , P 2(z0) = 0 . (2)

Because the sum of residues of P 2 vanishes, the first scat-
tering equation follows from those at i = 2, . . . , n. Trans-
lation invariance implies that we must fix the location of
z1 by hand. On the support of the equations at zi, which
fix these points, P 2(z0) is global and holomorphic, hence
constant in z0, depending only on ⌧ . Therefore, the final
equation P 2(z0) = 0 determines ⌧ .

The ACS proposal for the 1-loop integrand of type-II
supergravity amplitudes takes the form

M(1)
SG =

Z
Iq dd` d⌧ �̄(P 2(z0))

nY

i=2

�̄(ki · P (zi))dzi , (3)

where, for the critical case, d = 10 and Iq = I(ki, ✏i, zi|q),
and ✏i is the polarisation data. It is obtained as a sum
over spin structures of a worldsheet correlator of vertex
operators, giving rise to certain Pfaffians and partition
functions described later and in more detail in [9]. This
formula is doubly periodic in the zi and modular invari-
ant, i.e., invariant under ⌧ ! ⌧+1,�1/⌧ (and `! `, ⌧`).

In [10], it was shown that when n = 4, as in string
theory, I is independent of zi and q, so it factors out
of the integral. The nontrivial remaining integral is the
n = 4 version of the more general integral

M(1)
n�gon =

Z
dd` d⌧ �̄(P 2(z0))

nY

i=2

�̄(ki · P (zi))dzi ,

where the integral is modular invariant for d = 2n + 2.
In [10], this was conjectured to be equivalent to a sum
over permutations of n-gons.

In both cases, there are as many delta functions as
integration variables and these restrict the integral to
a sum over a discrete set of solutions to the scattering
equations. Each term consists of the integrand evaluated
at the corresponding solution divided by a Jacobian.

III. FROM A TORUS TO A RIEMANN SPHERE

Here we use a residue theorem (or integration by parts
in our notation) to reduce the formula on the elliptic
curve to one on the nodal Riemann sphere at q = 0 (such
‘global residue theorems’ have already been applied to
tree-level CHY formulae by [11]). We will be left with
scattering equations that have off-shell momenta associ-
ated to `, and a formula for the 1-loop integrand based
on these.

1
2- 1

2

⌧ $

FIG. 1. Contour argument in the fundamental domain.

In order to obtain a formula for the amplitude on the
Riemann sphere, we assume that Iq := I(. . . |q) is holo-
morphic as a function of q on the fundamental domain
D⌧ = {|⌧ | � 1,<⌧ 2 [�1/2, 1/2]} for the modular group.
It was shown in [9] that the holomorphicity of the su-
pergravity integrand at q = 0 is a consequence of the
GSO projection. For other values of q the possible poles
in the integrand can only occur when zi ! zj , but the
standard factorisation argument [11] applies here also to
imply that this can only happen when the momenta are
factorising and hence nongeneric. The main argument is
then

M(1)
SG =

Z
Iq dd`

dq

q
@̄

✓
1

2⇡iP 2(z0)

◆ nY

i=2

�̄(ki · P (zi))dzi

= �
Z

Iq dd` @̄

✓
dq

2⇡iq

◆
1

P 2(z0)

nY

i=2

�̄(ki · P (zi))dzi

= �
Z

I0 dd`
1

P 2(z0)

nY

i=2

�̄(ki · P (zi))dzi

���
q=0

. (4)

In the first line, we put d⌧ = dq/2⇡iq and inserted the
definition of �̄(P 2(z0)). In the second line, we integrated
by parts in the domain D⌧ , yielding a delta function sup-
ported at q = 0 that is then integrated out. The bound-
ary terms cancel because of the modular invariance. This
is equivalent to a contour integral argument in the fun-
damental domain D⌧ as in figure 1. The sum of the
residues at the poles of 1/P 2(z0, . . . |q) simply gives the
contribution from the residue at the top, q = 0, since the
contributions from the sides and the unit circle cancel by
modular invariance.

Like tree level, but now for one-loop integrand!

two new “particles”: loop momentum insertions ±`

Pµ = dσ

(
`µ

σ − σ+`
+
−`µ

σ − σ−`
+
∑

i

kiµ

σ − σi

)
= `µ ω + dσ

∑

i

kiµ

σ − σi

I(1) = lim
τ→i∞

I torus

one-loop scattering equations depend on `µ

P2 − `2 ω2 = 0 ⇔ P2 − `2 ω2 has no poles at σi , σ±
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One Loop

New Formalism
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In order to obtain a formula for the amplitude on the
Riemann sphere, we assume that Iq := I(. . . |q) is holo-
morphic as a function of q on the fundamental domain
D⌧ = {|⌧ | � 1,<⌧ 2 [�1/2, 1/2]} for the modular group.
It was shown in [9] that the holomorphicity of the su-
pergravity integrand at q = 0 is a consequence of the
GSO projection. For other values of q the possible poles
in the integrand can only occur when zi ! zj , but the
standard factorisation argument [11] applies here also to
imply that this can only happen when the momenta are
factorising and hence nongeneric. The main argument is
then

M(1)
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dq

q
@̄
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2⇡iP 2(z0)

◆ nY

i=2
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Z

Iq dd` @̄

✓
dq

2⇡iq

◆
1
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nY
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= �
Z

I0 dd`
1

P 2(z0)

nY

i=2

�̄(ki · P (zi))dzi

���
q=0

. (4)

In the first line, we put d⌧ = dq/2⇡iq and inserted the
definition of �̄(P 2(z0)). In the second line, we integrated
by parts in the domain D⌧ , yielding a delta function sup-
ported at q = 0 that is then integrated out. The bound-
ary terms cancel because of the modular invariance. This
is equivalent to a contour integral argument in the fun-
damental domain D⌧ as in figure 1. The sum of the
residues at the poles of 1/P 2(z0, . . . |q) simply gives the
contribution from the residue at the top, q = 0, since the
contributions from the sides and the unit circle cancel by
modular invariance.

Previous derivation applied to “type II supergravity in 10D”.

More general?

Higher genus is very restrictive (modular invariance).

Perturbative QFT less restricted than a string theory!

Proposal: generic loop expansion is nodal expansion on sphere.

Look directly for I(1) in nodal sphere, in any D.
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A(1) =

∫
dD`

1
`2

∫

M0,n+2

dµ(1) I(1)

2

satisfies

@̄P = 2⇡i
X

i

ki�̄(z � zi)dz ,

where �̄(f(z)) := @̄ 1
2⇡if(z) = �(<f)�(=f)df(z) . Intro-

ducing ` 2 Rd to parametrise the zero-modes, and denot-
ing zij = zi � zj , our choice of solution for P (z, zi|q)
is

P = 2⇡i `dz+
X

i

ki

 
✓01(z � zi)

✓1(z � zi)
+
X

j 6=i

✓01(zij)

n ✓1(zij)

!
dz . (1)

This is meromorphic and doubly periodic in z and the
zi. The ACS version is not holomorphic and does not
factorise properly [9], while that in [8, 10] is not doubly
periodic until the loop momentum is integrated out (as in
conventional string theory), and is thus not well defined
on the elliptic curve for fixed `. Using (1), the scattering
equations are

Reszi
P 2(z) = 2ki · P (zi) = 0 , P 2(z0) = 0 . (2)

Because the sum of residues of P 2 vanishes, the first scat-
tering equation follows from those at i = 2, . . . , n. Trans-
lation invariance implies that we must fix the location of
z1 by hand. On the support of the equations at zi, which
fix these points, P 2(z0) is global and holomorphic, hence
constant in z0, depending only on ⌧ . Therefore, the final
equation P 2(z0) = 0 determines ⌧ .

The ACS proposal for the 1-loop integrand of type-II
supergravity amplitudes takes the form

M(1)
SG =

Z
Iq dd` d⌧ �̄(P 2(z0))

nY

i=2

�̄(ki · P (zi))dzi , (3)

where, for the critical case, d = 10 and Iq = I(ki, ✏i, zi|q),
and ✏i is the polarisation data. It is obtained as a sum
over spin structures of a worldsheet correlator of vertex
operators, giving rise to certain Pfaffians and partition
functions described later and in more detail in [9]. This
formula is doubly periodic in the zi and modular invari-
ant, i.e., invariant under ⌧ ! ⌧+1,�1/⌧ (and `! `, ⌧`).

In [10], it was shown that when n = 4, as in string
theory, I is independent of zi and q, so it factors out
of the integral. The nontrivial remaining integral is the
n = 4 version of the more general integral

M(1)
n�gon =

Z
dd` d⌧ �̄(P 2(z0))

nY

i=2

�̄(ki · P (zi))dzi ,

where the integral is modular invariant for d = 2n + 2.
In [10], this was conjectured to be equivalent to a sum
over permutations of n-gons.

In both cases, there are as many delta functions as
integration variables and these restrict the integral to
a sum over a discrete set of solutions to the scattering
equations. Each term consists of the integrand evaluated
at the corresponding solution divided by a Jacobian.

III. FROM A TORUS TO A RIEMANN SPHERE

Here we use a residue theorem (or integration by parts
in our notation) to reduce the formula on the elliptic
curve to one on the nodal Riemann sphere at q = 0 (such
‘global residue theorems’ have already been applied to
tree-level CHY formulae by [11]). We will be left with
scattering equations that have off-shell momenta associ-
ated to `, and a formula for the 1-loop integrand based
on these.

1
2- 1

2

⌧ $

FIG. 1. Contour argument in the fundamental domain.

In order to obtain a formula for the amplitude on the
Riemann sphere, we assume that Iq := I(. . . |q) is holo-
morphic as a function of q on the fundamental domain
D⌧ = {|⌧ | � 1,<⌧ 2 [�1/2, 1/2]} for the modular group.
It was shown in [9] that the holomorphicity of the su-
pergravity integrand at q = 0 is a consequence of the
GSO projection. For other values of q the possible poles
in the integrand can only occur when zi ! zj , but the
standard factorisation argument [11] applies here also to
imply that this can only happen when the momenta are
factorising and hence nongeneric. The main argument is
then

M(1)
SG =

Z
Iq dd`

dq

q
@̄

✓
1

2⇡iP 2(z0)

◆ nY

i=2

�̄(ki · P (zi))dzi

= �
Z

Iq dd` @̄

✓
dq

2⇡iq

◆
1

P 2(z0)

nY

i=2

�̄(ki · P (zi))dzi

= �
Z

I0 dd`
1

P 2(z0)

nY

i=2

�̄(ki · P (zi))dzi

���
q=0

. (4)

In the first line, we put d⌧ = dq/2⇡iq and inserted the
definition of �̄(P 2(z0)). In the second line, we integrated
by parts in the domain D⌧ , yielding a delta function sup-
ported at q = 0 that is then integrated out. The bound-
ary terms cancel because of the modular invariance. This
is equivalent to a contour integral argument in the fun-
damental domain D⌧ as in figure 1. The sum of the
residues at the poles of 1/P 2(z0, . . . |q) simply gives the
contribution from the residue at the top, q = 0, since the
contributions from the sides and the unit circle cancel by
modular invariance.

Previous derivation applied to “type II supergravity in 10D”.

More general?

Higher genus is very restrictive (modular invariance).

Perturbative QFT less restricted than a string theory!

Proposal: generic loop expansion is nodal expansion on sphere.

Look directly for I(1) in nodal sphere, in any D.
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One Loop

New CHY-type Formulas [Geyer, Mason, RM, Tourkine 15]

Yang-Mills: I(1)
YM = I(1)

kin (ε) I(1)
colour Gravity: I(1)

Grav = I(1)
kin (ε) I(1)

kin (ε̃)

Double copy!

Susy: I(1)
kin (ε) = vector + fermion in the loop

Non-susy: I(1)
kin (ε) = only vector =

∑

r

Pf′M(εi , ε
(r)
+ , ε

(r)
− )

(similar to tree level)

Can write “vertex operator” for node. [Roehrig, Skinner 17]

New formula: A(1) =

∫
dD`

1
`2 I(`) , I(`) =

∫

M0,n+2

dµ(1) I(1)

Explicit integrand I(`) ? No need to solve the scattering equations.
[Baadsgaard, Bourjaily, Bjerrum-Bohr, Damgaard, Feng 15; He, Yuan 15, . . . ]
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One Loop

New Propagator Structure

New formula: A(1) =

∫
dD`

1
`2

∫

M0,n+2

dµ(1) I(1)

Puzzle! Only one
1
`2 , rest depends only on ` · K , ` · ε . . .

Shifted Integrand
use

1∏
i Di

=
∑

i

1
Di
∏

j 6=i (Dj − Di )
, Di = (`+ Ki )

2

shift each term
1
Di
→ 1

`2

Bubble: 1
`2(`+ K )2 =

1
`2(2 ` · K + K 2)

+
1

(`+ K )2(−2 ` · K − K 2)

shift→ 1
`2

[
1

2 ` · K + K 2 +
1

−2 ` · K + K 2

]
Democratic placement of ` in “canonical” integrand.
Good for obtaining loop integrands from trees! “Q-cuts” [Baadsgaard et al 15, CHY 15]

Consequences for colour-kinematics duality. [He, Schlotterer 16-17, Geyer, RM 17]

Ricardo Monteiro (Queen Mary) Scattering Amp. from Ambitwistor Strings 24 / 32



One Loop

New Propagator Structure

New formula: A(1) =

∫
dD`

1
`2

∫

M0,n+2

dµ(1) I(1)

Puzzle! Only one
1
`2 , rest depends only on ` · K , ` · ε . . .

Shifted Integrand
use

1∏
i Di

=
∑

i

1
Di
∏

j 6=i (Dj − Di )
, Di = (`+ Ki )

2

shift each term
1
Di
→ 1

`2

Bubble: 1
`2(`+ K )2 =

1
`2(2 ` · K + K 2)

+
1

(`+ K )2(−2 ` · K − K 2)

shift→ 1
`2

[
1

2 ` · K + K 2 +
1

−2 ` · K + K 2

]

Democratic placement of ` in “canonical” integrand.
Good for obtaining loop integrands from trees! “Q-cuts” [Baadsgaard et al 15, CHY 15]

Consequences for colour-kinematics duality. [He, Schlotterer 16-17, Geyer, RM 17]

Ricardo Monteiro (Queen Mary) Scattering Amp. from Ambitwistor Strings 24 / 32



One Loop

New Propagator Structure

New formula: A(1) =

∫
dD`

1
`2

∫

M0,n+2

dµ(1) I(1)

Puzzle! Only one
1
`2 , rest depends only on ` · K , ` · ε . . .

Shifted Integrand
use

1∏
i Di

=
∑

i

1
Di
∏

j 6=i (Dj − Di )
, Di = (`+ Ki )

2

shift each term
1
Di
→ 1

`2

Bubble: 1
`2(`+ K )2 =

1
`2(2 ` · K + K 2)

+
1

(`+ K )2(−2 ` · K − K 2)

shift→ 1
`2

[
1

2 ` · K + K 2 +
1

−2 ` · K + K 2

]
Democratic placement of ` in “canonical” integrand.
Good for obtaining loop integrands from trees! “Q-cuts” [Baadsgaard et al 15, CHY 15]

Consequences for colour-kinematics duality. [He, Schlotterer 16-17, Geyer, RM 17]

Ricardo Monteiro (Queen Mary) Scattering Amp. from Ambitwistor Strings 24 / 32



Two Loops

Two Loops
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Two Loops

Status at Two Loops

Idea:

Two loops

From g = 2 to the Riemann sphere

Two-loop amplitude:

M (2) =
1
`21`

2
2

Z
d�A

volG

Y

A

�̄
⇣
E(2)

A

⌘
I

!

with the two-loop off-shell scattering equations:

E(2)
A ⌘ Res�AS = 0 , A = 1, . . . , n + 2g

S(�) ⌘ P2 �
2X

r=1

`2r!
2
r .

and P =
Pg

r=1 `r!r +
P

i ki
d�
���i

.

Yvonne Geyer (Oxford) Two-loop Integrands from the Riemann Sphere July 4, 2016

Done

heuristic: 4-pts in SUGRA, SYM [Geyer, Mason, RM, Tourkine 16] [genus 2: Adamo, Casali 15]

detailed: n-pts in SUGRA, SYM [Geyer, RM 18]

genus 2 follows closely superstring [D’Hoker, Phong 01, 05]

In progress

n-pts in non-SUSY gravity, YM

Ricardo Monteiro (Queen Mary) Scattering Amp. from Ambitwistor Strings 26 / 32



Two Loops

Genus 2
There are 2 holomorphic differentials ωI , I = 1,2.

Pick homology basis:

Normalise ωI with A-cycles:
∮

AI

ωJ = δIJ

Period matrix: τIJ =

∮

BI

ωJ = τJI −→ 3 modular parameters

q11 = eiπτ11 , q22 = eiπτ22 , q12 = e2iπτ12

Bi-nodal sphere: q11 = q22 = 0

Recall genus 1: q = 0
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Two Loops

From Genus 2 to the Bi-Nodal Sphere

Solution for Pµ : Pµ = `1µ ω1 + `2µ ω2 +
∑

i

ki µ$i,∗

P2(σ) = 0 at genus 2: • Ei = 0 (no poles at σi ),

• P2|Ei =0 = uIJ ωI ωJ ⇒ uIJ = 0 (3 extra).

Genus-2 scattering equations would fix {σi ,qIJ} but too hard to solve.

Residue argument

Genus 1: from u = 0 into q = 0 .
Genus 2: from u11 = u22 = 0 into q11 = q22 = 0 . (more subtle)

Amplitude: A(2) =

∫
dD`1dD`2

∫

M2,n

dµ Igenus-2 =

∫
dD`1dD`2

(`1)2(`2)2

∫

M0,n+4

dµ(2) I(2)
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Two Loops

From Genus 2 to the Bi-Nodal Sphere

New formula: A(2) =

∫
dD`1dD`2

(`1)2(`2)2

∫

M0,n+4

dµ(2) I(2)

Subtle points of residue argument:

leftover equation of type uIJ = 0 : u11 + u22 + u12 = 0
⇒ P2 − `2

1 ω
2
1 − `2

1 ω
2
1 +(`2

1 + `2
2)ω1 ω2 = 0 (no poles at σi , σ1± , σ2± )

I(2) = lim
q11,q22→ 0

Igenus-2 for particular form of Igenus-2

leftover q12 becomes cross ratio of σ1± , σ2± . Unrestricted range:
∫
|q12|≤1 · · · =

∫
|q12|≤1 ( 1

1−q12
− q12

1−q12
) · · · modular

=
∫

q12

1
1−q12

· · ·

I(2)
SUGRA = 1

1−q12
I(2)

kin (ε) I(2)
kin (ε̃)  I(2)

SYM = I(2)
kin (ε) I ′(2)

colour

Get I ′(2)
colour from current algebra on bi-nodal sphere (cf. heterotic string).
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Two Loops

All Genus Plausibility

genus g dimC(Mg,n) = n + 3g − 3

degenerations −g

g-nodal sphere dimC(M0,n+2g) = (n + 2g)− 3
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Conclusion

Ricardo Monteiro (Queen Mary) Scattering Amp. from Ambitwistor Strings 31 / 32



Conclusion

Conclusion

Ambitwistor strings describe perturbative QFTs.

Formulas for YM and gravity, SUSY/no-SUSY.

loop expansion = nodal expansion

2

satisfies

@̄P = 2⇡i
X

i

ki�̄(z � zi)dz ,

where �̄(f(z)) := @̄ 1
2⇡if(z) = �(<f)�(=f)df(z) . Intro-

ducing ` 2 Rd to parametrise the zero-modes, and denot-
ing zij = zi � zj , our choice of solution for P (z, zi|q)
is

P = 2⇡i `dz+
X

i

ki

 
✓01(z � zi)

✓1(z � zi)
+
X

j 6=i

✓01(zij)

n ✓1(zij)

!
dz . (1)

This is meromorphic and doubly periodic in z and the
zi. The ACS version is not holomorphic and does not
factorise properly [9], while that in [8, 10] is not doubly
periodic until the loop momentum is integrated out (as in
conventional string theory), and is thus not well defined
on the elliptic curve for fixed `. Using (1), the scattering
equations are

Reszi
P 2(z) = 2ki · P (zi) = 0 , P 2(z0) = 0 . (2)

Because the sum of residues of P 2 vanishes, the first scat-
tering equation follows from those at i = 2, . . . , n. Trans-
lation invariance implies that we must fix the location of
z1 by hand. On the support of the equations at zi, which
fix these points, P 2(z0) is global and holomorphic, hence
constant in z0, depending only on ⌧ . Therefore, the final
equation P 2(z0) = 0 determines ⌧ .

The ACS proposal for the 1-loop integrand of type-II
supergravity amplitudes takes the form

M(1)
SG =

Z
Iq dd` d⌧ �̄(P 2(z0))

nY

i=2

�̄(ki · P (zi))dzi , (3)

where, for the critical case, d = 10 and Iq = I(ki, ✏i, zi|q),
and ✏i is the polarisation data. It is obtained as a sum
over spin structures of a worldsheet correlator of vertex
operators, giving rise to certain Pfaffians and partition
functions described later and in more detail in [9]. This
formula is doubly periodic in the zi and modular invari-
ant, i.e., invariant under ⌧ ! ⌧+1,�1/⌧ (and `! `, ⌧`).

In [10], it was shown that when n = 4, as in string
theory, I is independent of zi and q, so it factors out
of the integral. The nontrivial remaining integral is the
n = 4 version of the more general integral

M(1)
n�gon =

Z
dd` d⌧ �̄(P 2(z0))

nY

i=2

�̄(ki · P (zi))dzi ,

where the integral is modular invariant for d = 2n + 2.
In [10], this was conjectured to be equivalent to a sum
over permutations of n-gons.

In both cases, there are as many delta functions as
integration variables and these restrict the integral to
a sum over a discrete set of solutions to the scattering
equations. Each term consists of the integrand evaluated
at the corresponding solution divided by a Jacobian.

III. FROM A TORUS TO A RIEMANN SPHERE

Here we use a residue theorem (or integration by parts
in our notation) to reduce the formula on the elliptic
curve to one on the nodal Riemann sphere at q = 0 (such
‘global residue theorems’ have already been applied to
tree-level CHY formulae by [11]). We will be left with
scattering equations that have off-shell momenta associ-
ated to `, and a formula for the 1-loop integrand based
on these.

1
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⌧ $

FIG. 1. Contour argument in the fundamental domain.

In order to obtain a formula for the amplitude on the
Riemann sphere, we assume that Iq := I(. . . |q) is holo-
morphic as a function of q on the fundamental domain
D⌧ = {|⌧ | � 1,<⌧ 2 [�1/2, 1/2]} for the modular group.
It was shown in [9] that the holomorphicity of the su-
pergravity integrand at q = 0 is a consequence of the
GSO projection. For other values of q the possible poles
in the integrand can only occur when zi ! zj , but the
standard factorisation argument [11] applies here also to
imply that this can only happen when the momenta are
factorising and hence nongeneric. The main argument is
then

M(1)
SG =

Z
Iq dd`

dq

q
@̄

✓
1

2⇡iP 2(z0)

◆ nY
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�̄(ki · P (zi))dzi

= �
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. (4)

In the first line, we put d⌧ = dq/2⇡iq and inserted the
definition of �̄(P 2(z0)). In the second line, we integrated
by parts in the domain D⌧ , yielding a delta function sup-
ported at q = 0 that is then integrated out. The bound-
ary terms cancel because of the modular invariance. This
is equivalent to a contour integral argument in the fun-
damental domain D⌧ as in figure 1. The sum of the
residues at the poles of 1/P 2(z0, . . . |q) simply gives the
contribution from the residue at the top, q = 0, since the
contributions from the sides and the unit circle cancel by
modular invariance.

Many open questions

All-loop story?

Double copy from gauge theory to gravity?

4D formalism? Efficient manipulation, inc. loop integration?

Beyond scattering amplitudes? Beyond perturbation theory?

Insights into string theory?
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Conclusion

Conclusion

Ambitwistor strings describe perturbative QFTs.

Formulas for YM and gravity, SUSY/no-SUSY.

loop expansion = nodal expansion
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KLT Relations: String Theory Origin [Kawai, Lewellen, Tye ‘86]

Vertex operators: Vclosed(εµν = εµε̃ν) ∼ Vopen(εµ)V̄open(ε̃ν) sij = (ki + kj )
2

A grav
3 = AYM(123) ÃYM(123) A grav

4 =
sinπα′s12

πα′
AYM(1234) ÃYM(1243)

Field theory limit is α′ → 0.

In general (tree level) [Bern, Dixon, Perelstein, Rozowsky ‘98]

A grav
n =

∑

Pn,P
′
n

AYM(Pn) S KLT[Pn,P
′

n] ÃYM(P
′

n) S KLT ∼ sn−3
ij

Useful at loop level via unitarity cuts.

Recall YM colour decomposition: colour traces or colour factors.

AYM
n =

∑

non cyclic

AYM(1,2, . . . ,n) tr(T a1T a2 · · ·T an ) =
∑

α∈cubic

Nα cα

with cα = f abc f ··· · · · f ··· , f abc = tr([T a,T b]T c),

but Jacobi identities: cα ± cβ ± cγ = 0
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Summary of Double Copy

Agrav(εµνi ) ∼ (prop)−1 AYM(εµi ) × AYM(ε̃ νi )
∣∣
colour stripped

KLT relations

Agrav =
∑

Pn,P
′
n

AYM(ε,Pn) S KLT[Pn,P
′

n] AYM(ε̃,P
′

n)

BCJ double copy

AYM =
∑

α∈cubic

nα(ε) cα
Dα

Agrav =
∑

α∈cubic

nα(ε) nα(ε̃)

Dα

CHY formulas

A =

∫
dµ I IYM = Pf ′M(ε)× C Igrav = Pf ′M(ε)× Pf ′M(ε̃)
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