
Spontaneous CP breaking and the axion potential:
an effective Lagrangian approach

Paolo Di Vecchia

Niels Bohr Institute, Copenhagen and Nordita, Stockholm

Copenhagen, 16.08.2018

Current Themes in High-Energy Physics and Cosmology
Copenhagen 13-17 August 2018

Paolo Di Vecchia (NBI+NO) CP Copenhagen, 16.08.2018 1 / 70



Foreword

This talk is based on the work done together with
Giancarlo Rossi, Gabriele Veneziano and Shimon Yankielowicz,
JHEP 1712 (2017) 104, arXiv:1709.00731v3 [hep-th]

Related work
D. Gaiotto, Z. Komargodski and N. Seiberg
JHEP 1801 (2018) 110, arxiv:1708.06806 [hep-th]

as well as older papers by
A. Smilga, Phys. Rev D59 (1999) 114021
M. Tytgat, Phys. Rev. D 61 (2000) 114009
M. Creutz, Phys. Rev. Lett. 92 (2004) 201601

Paolo Di Vecchia (NBI+NO) CP Copenhagen, 16.08.2018 2 / 70



Plan of the talk
1 Introduction
2 Low-energy effective Lagrangian of QCD
3 Finding the minimum
4 The usual form of χQCD

5 QCD phase diagrams: Nf = 1
6 QCD phase diagrams: Nf = 2
7 Nf = 2 with equal masses
8 QCD phase diagrams: Nf > 2
9 CP violation

10 Including the axion
11 The axion potential
12 The axion potential: Nf = 1
13 The axion potential: Nf = 2,3
14 Conclusions and outlook

Paolo Di Vecchia (NBI+NO) CP Copenhagen, 16.08.2018 3 / 70



Introduction

I Dashen in 1971 noticed that a phase in the quark mass matrix
would generate CP violation in strong interactions.

I He speculated that this could explain the CP violation found in the
physics of K mesons.

I It turned out that one would get a too big CP violation.
I Although the ABJ U(1)A anomaly was known, one thought that

one could rotate the phase away by a U(1)A transformation
because the topological charge was a total derivative.

I In this way one got rid of CP violation.
I This, however, brought in another problem: the U(1) problem.
I The split in the quark masses is not sufficient to explain the mass

spectrum of the pseudoscalar mesons.
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I After the discovery of instanton solutions and the presence of
different topological sectors it was soon realized that the U(1)
problem might be solved.

I Although it remained controversial for a while.
I The observation that, in the framework of large-N QCD, the quark

mass matrix contained an extra parameter corresponding to the
topological susceptibility of pure Yang-Mills theory, opened the
way to a quantitative resolution of the U(1) problem.
[Witten,1978 and Veneziano,1978]

I It is based on an effective Lagrangian for the pseudoscalar
mesons that is valid for small m

Λ and 1
N with mN

Λ fixed.
I m is the mass of the quarks, N is the number of colors.
I Unfortunately, the resolution of the U(1) problem brings back the

problem of CP violation of strong interactions.
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I The Lagrangian contains an extra term proportional to the
topological charge density of Yang-Mills theory that breaks CP.

I Actually, by performing a U(1)A transformation, one can eliminate
the phase from the mass matrix and having it to contribute to the
topological term:

LQCD = · · · − θ
∫

d4x Q(x)

θ = θ̄ + arg det m ; Q(x) =
g2

32π2 F aF̃ a

Under CP: Q → −Q.
I The CP violation induced by this term was used to estimate the

electric dipole moment of the neutron [Baluni, 1979].
I It was later refined by identifying a leading logarithmic contribution

thus establishing a limit on θ ∼ 10−9 − 10−10

[Crewter et al, 1979]
I For the smallness of it QCD had, on its own, no explanation.
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I A natural way to put the θ-angle to zero is by the Peccei-Quinn
mechanism that implies an axion [Peccei and Quinn, 1977].

I A generic axion can be incorporated in the previous effective
Lagrangian [Sannino and DV, 2014].

I Since the axion mass is much smaller than that of the
pseudoscalar mesons, one can compute the axion potential by
integrating out the pseudoscalar mesons.

I This is certainly justified in a certain region of the parameter
space of the effective Lagrangian.

I At zero temperature we are certainly in this region where this way
of computing the axion potential is reliable.

I On the other hand, there are other regions where the mass of one
pseudoscalar meson goes to zero.

I The question is if at finite temperature this region can be reached.
I If this is this case the usual calculation of the axion potential is not

correct.
I Lattice gauge theory calculations are not yet precise enough to

see if this is the case.
I In this seminar I will describe how all this comes about.
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Low-energy effective Lagrangian of QCD
I Strong interactions are described by the QCD Lagrangian:

L = −1
4

F a
µνF aµν + Ψ̄ (iγµDµ −m) Ψ− θQ(x)

I Mass matrix can always be put in a diagonal form

mij = miδij ; i , j = 1 . . .Nf

I Topological charge density

Q(x) =
g2

32π2 Fµν F̃µν ; F̃µν =
1
2
εµνρσFρσ

I For massless quarks the transformations (A and B are Nf × Nf
unitary matrices)

Ψi
R → AijΨj

R ; Ψi
L → BijΨj

L ; ΨR,L =
1± γ5

2
Ψ

are a symmetry of the QCD Lagrangian:
U(Nf )× U(Nf ) chiral invariance
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I This symmetry is spontaneously broken to the vectorial U(Nf )
generated by the transformations for which A = B.

I Pseudoscalar mesons are Goldstone bosons associated to the
spontaneous breaking of chiral symmetry.

I They get a non-zero mass from the quark mass matrix (m 6= 0).
I But the splittling in the quark masses:

mu

md
= 0.56 ;

ms

md
= 20.1 ; m̄d |µ=2GeV = (3.1± 1)MeV

cannot explain the mass spectrum of the pseudoscalar mesons:

mπ = 139MeV ; mη = 547MeV ; mη′ = 957MeV ; mK = 498MeV

This problem was called U(1)-problem.
I U(1) axial anomaly:

∂µ
[
Ψ̄iγ

µγ5Ψi
]

= 2Nf q(x) + 2imiΨ̄iγ5Ψi

At large N, g2N is kept fixed and the anomaly is negligible.
I How can we incorporate the effect of the anomaly in the meson

mass matrix?
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I At low energy (E << Λ) and low quark masses (mi << Λ) we can
neglect all (the heavy) degrees of freedom keeping only the
Goldstone bosons (pseudoscalar mesons).

I They are described by the following chiral Lagrangian:

L =
1
2

Tr(∂µU∂µU†) +
Fπ

2
√

2
Tr
(
µ2(U + U†)

)
; UU† =

F 2
π

2

I The constraint implies that U ∈ U(Nf ):

U(x) =
Fπ√

2
ei
√

2Φ(x)/Fπ ; Φ(x) = Πaτa +
S√
Nf

; Tr [τaτb] = δab

Fπ ∼ 95MeV is the pion decay constant measured in π → µν.
I For Nf = 3, Π corresponds to the octet of pseudoscalar mesons:

Πaτa =
1√
2

 π0 + η8/
√

3
√

2π+
√

2K +
√

2π− −π0 + η8/
√

3
√

2K 0
√

2K−
√

2K̄ 0 −2η8/
√

3
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I As the quark mass matrix, also µ2 can be chosen to be diagonal:

µ2
ij = µ2

i δij

I Gell-Mann-Oakes-Renner relation

µ2
i F 2

π = −2mi < Ψ̄iΨi >

In first approximation the ratio mi/µ
2
i is independent on i .

I If µ2 = 0 the previous Lagrangian is invariant under U(Nf )×U(Nf )
transformations:

U → AUB† ; U† → BU†A† ; A−1 = A† ; B−1 = B†

I It has the same global symmetries as QCD with massless quarks,
but it does not take care of the U(1) axial anomaly !!
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I We have to add a term that is invariant under
SU(Nf )× SU(Nf )× U(1)V and trasforms under the U(1)A to
reproduce the axial anomaly:

L→ L + 2Nf q(x)α ; U → e−2iαU

I This insures that the effective Lagrangian satisfies the same
anomalous Ward identities as the fundamental QCD Lagrangian.

I This brings us to the following modified Lagrangian:

L =
1
2

Tr(∂µU∂µU†) +
Fπ

2
√

2
Tr
(
µ2(U + U†)

)
+

+
i
2

Q(x)Tr
(

log U − log U†
)

I In general we could add a generic term of the form:
∞∑

i=0

L2i(U,U†)[q(x)]2i

preserving parity and U(Nf )× U(Nf ).
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I It turns out that, for large N, only one term of the previous sum
contributes.

I This brings us to:

L(U,U†,q) =
1
2

Tr(∂µU∂µU†) +
Fπ

2
√

2
Tr
(
µ2(U + U†)

)

+
i
2

Q(x)Tr
(

log U − log U†
)

+
1
2

Q2

χYM
− θQ(x)

[Veneziano and DV, 1980; Witten, 1980; Rosenzweig, Schechter
and Trahern, 1980 ; Nath and Arnowitt, 1980]

I θ term is added to study the dependence of phys. quantities on θ
and χ is a constant ∼ O(1) for large N whose meaning will
become clear later.

I Our aim in the following is
1 Show how the U(1) problem is solved
2 Determine the dependence of physical quantities on the θ

parameter
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Finding the minimum

I Eliminate Q by using its algebraic equation of motion:

L(U,U†,q) =
1
2

Tr(∂µU∂µU†) +
Fπ

2
√

2
Tr
(
µ2(U + U†)

)

−χYM

2

[
θ − i

2
Tr
(

log U − log U†
)]2

I Find the value of < U > that minimizes the potential.
I Since UU† ∼ 1 and µ2 is diagonal we can take:

< Uij >= e−iφi δij
Fπ√

2
; Uij ≡ e−iφi Vij =⇒ < Vij >= δij

Fπ√
2
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I One obtains (µ2
ij (φi) = µ2

i cosφiδij) :

L =
1
2

Tr(∂µV∂µV †) +
χYM

8

[
Tr
(

log V − log V †
)]2

+
Fπ

2
√

2
Tr
(
µ2(φi)

[
(V + V †)− 2Fπ√

2

])

+
F 2
π

2

Nf∑
i=1

µ2
i cosφi −

χYM

2

θ − Nf∑
i=1

φi

2

← −V

+
i
2

θ − Nf∑
i=1

φi

χTr

[
(log V − log V †)−

√
2

Fπ
(V − V †)

]
I In the last line we have used the relation:

µ2
i sinφi = a

θ − Nf∑
i=1

φi
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I The parametrs φi are determined by minimizing the potential:

V =
F 2
π

2

a
2

(θ −
Nf∑

i=1

φi)
2 −

Nf∑
i=1

µ2
i cosφi

 ; χYM ≡
aF 2

π

2

Since χ ∼ O(1) and F 2
π ∼ O(N) at large N, then a ∼ O( 1

N ).
I This implies the following equations:

µ2
i sinφi = a

θ − Nf∑
i=1

φi

 ; i = 1 . . .Nf
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I Finally in terms of Φ we get:

L =
1
2

Tr(∂µV∂µV †)− aNf

2
S2 +

F 2
π

2
Tr

[
µ2(θ)

(
cos
√

2Φ

Fπ
− 1

)]
+

+
aFπ√

2

θ − Nf∑
i=1

φi

Tr

[
Fπ√

2
sin
√

2Φ

Fπ
− Φ

]
← CP violation

where

V =
Fπ√

2
ei
√

2Φ(x)/Fπ ; Φ = τaΠa +
S√
Nf

; µ2
ij (θ) = µ2

i cosφiδij

I We proceed as follows:
1 First we solve the minimization equations that determine φi as

functions of θ,a and µ2
i .

2 Then we insert them in L that will in general be a function of θ,a
and µ2

i .
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I Physical quantities are invariant under θ → θ + 2π !!
If we have found a solution φi(θ) of the minimization equations,
then the following is also a solution:

φi(θ + 2π) = φi(θ) + 2π ; φj(θ + 2π) = φj(θ) ; i 6= j = 1 . . .Nf

But the physical quantities depend only on eiφi and therefore are
invariant under a shift of 2π of θ.

I The quadratic part of the previous Lagrangian is:

L2 =
1
2

Tr (∂µΦ∂µΦ)− a
2

Tr (Φ) Tr (Φ)− 1
2

Tr
(
µ2(θ)Φ2

)
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I It is convenient to decompose the matrix Φ as follows:

Φij = Π̃αβ τ̃αβij + viδij

τ̃αβij are the Nf (Nf − 1) non-diagonal generators of SU(Nf ).
I One gets:

< Π̃αβ(x)Π̃γδ(y) >F .T .=
iδαγδβδ

p2 − µ2
αβ

; µ2
αβ =

µ2
α(θ) + µ2

β(θ)

2

< vi(x)vj(y) >F .T .= iA−1
ij (p2)

Aij(p2) = (p2 − µ2
i (θ))δij − a


1 1 . . . 1 1
1 1 . . . 1 1
1 1 . . . 1 1
. . . . .
1 1 . . . 1 1
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I The masses M2
i (θ) of the physical states are determined by the

following equation:

det A =

Nf∏
i=1

(p2 −M2
i (θ)) =

Nf∏
i=1

(p2 − µ2
i (θ))

×

1− a
Nf∑

j=1

1
p2 − µ2

j (θ)

 = 0 ; µ2
i (θ) = µ2

i cosφi

I In the case with three flavours, θ = 0 and in the limit
µ2

1 ∼ µ2
2 << µ2

3 one gets the following masses for η and η′:

M2
± = m2

K +
3
2

a± 1
2

√
(2m2

K − 2m2
π − a)2 + 8a2

tanφ =
√

2− 3
2
√

2
·

m2
η −m2

π

m2
K −m2

π

; |η〉 = cosφ|8〉+ sinφ|1〉
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I We get a from the sum of the masses:

a =
m2
η + m2

η′ − 2m2
K

3
∼ 0.24(GeV )2

I Using this value of a and neglecting the square term in the square
root we get:

m2
η ∼ m2

K +
3− 2

√
2

2
a = 0.27(GeV )2 ; [Exp. 0.30]

m2
η′ ∼ m2

K +
3 + 2

√
2

2
a = 0.95(GeV )2 ; [Exp. 0.92]

and

φ ∼ 14 [Exp.11]

[Veneziano, 1978]
I a is related to the parameter χ that enters in the effective

Lagrangian (as the coefficient of the Q2 term) by χYM ≡ 1
2aF 2

π .
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I How can we extract it from the underlying QCD?
I In the large N limit quark loops can be neglected with respect to

gluons loops.
I Therefore, for large N, a can be extracted from the topological

susceptibility of pure Yang-Mills theory:

lim
q→0

(−i)
∫

d4y eiqx < Q(x)Q(y) >YM=
1
2

aF 2
π ∼ (180MeV )4

[Exp. Lattice] = (194(5)MeV )4

I This should not be confused with the topological susceptibility
computed in large N QCD or, equivalently, from the previous
effective Lagrangian (using the GMOR relation):

lim
q→0

(−i)
∫

d4xeiqx〈Q(x)Q(0)〉QCD ≡ χQCD =
χYM

1 + a
∑Nf

i=1
1
µ2

i

= χYM

1−
Nf∑

k=1

χYM

(mi〈ψ̄ψ〉)

−1
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I 〈ψ̄ψ〉 is the quark condensate in the large N limit i.e. in the planar
theory.

I 〈ψ̄ψ〉 has logarithmic terms that, however, are subleading for large
N.

I In the lattice calculation of 〈ψ̄ψ〉 one must then extract the leading
term for large N that is free from logarithmic terms.

I In other words, one has to compute:

〈ψ̄ψ〉planar = 3 lim
N→∞

〈ψ̄ψ〉(N)

N

I χQCD reduces to the theory with Nf − 1 flavors when one of the
quark mass becomes large.

I If all quarks become very heavy (possible for large N) it becomes
equal to χYM .

I χQCD = 0 in the chiral limit, when at least one of the µ2
i = 0, for

reasons that will become clear soon.
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I Using

µ2
1 = 0.7m2

π ; µ2
2 = 1.3m2

π ; a =
m2
η + m2

η′ − 2m2
K

3
= 0.24(GeV )2

we get

χQCD = (78.5MeV )4

I These numerical values come from the spectrum of the
pseudoscalar mesons.

I They can be computed in QCD on the lattice and the values
obtained are in good agreement with the previous values.
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The usual form of χQCD
I In the literature the topological susceptibility in QCD is given by

the following formula:

χQCD =
∂2F (θ)

∂θ2 |θ=0

where F (θ) is the free energy that in our case is given by the
potential:

V(θ) ≡ F (θ) =
F 2
π

2

− Nf∑
i=1

µ2
i cosφi +

a
2

(θ −
Nf∑

i=1

φi)
2


where the angles φi are determined by solving the conditions.

µ2
i sinφi = a(θ −

∑
j

φj) ; i = 1 . . .Nf

I These conditions imply:

µ2
i cosφi

∂φi

∂θ
= a(1−

∑
i

∂φi

∂θ
)

where the lhs is independent of i .Paolo Di Vecchia (NBI+NO) CP Copenhagen, 16.08.2018 25 / 70



I At θ = 0 (where φi = 0) the previous condition implies:

G ≡ µ2
i
∂φi

∂θ
= a(1−

∑
j

∂φi

∂θ
) = a(1−G

∑
j

1
µ2

j
) ; i = 1 . . .Nf

where G is independent on i .
I It implies that

G = a(1−
∑

j

∂φi

∂θ
) =

1
1
a +

∑
i

1
µ2

i

I Using the previous equations we can compute:

2
F 2
π

∂2F (θ)

∂θ2 |θ=0 = a(1−
∑

i

∂φi

∂θ
)2 +

∑
i

µ2
i cosφi

(
∂φi

∂θ

)2

= a(1−
∑

i

∂φi

∂θ
) =

1
1
a +

∑
i

1
µ2

i

=⇒ χQCD =
∂2F (θ)

∂θ2 |θ=0 =
F 2
π/2

1
a +

∑
i

1
µ2

i

=
χYM

1 + a
∑

i
1
µ2

i

Paolo Di Vecchia (NBI+NO) CP Copenhagen, 16.08.2018 26 / 70



QCD phase diagrams: Nf = 1
I Keep Fπ and a fixed and study phase diagrams (for zero

temperature and chemical potential) varying µ2
i and θ.

I For Nf = 1 we have the following potential:

V (φ)

a
= −ε cosφ+

1
2

(θ − φ)2 ; ε ≡ µ2

a
,

and its derivatives with respect to φ

V ′

a
= ε sinφ+ φ− θ ;

V ′′

a
= ε cosφ+ 1

V ′′′

a
= −ε sinφ ;

V ′′′′

a
= −ε cosφ .

I If ε < 1, V ′′ > 0 and there is only a single stable minimum with
positive mass.

I At θ = 0 the minimum is at φ = 0, while at θ = π it is at φ = π.
I In both cases CP is unbroken; CP is broken for other values of θ.
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I If ε > 1, V ′′ can be negative and some stationary points can
correspond to maxima rather than minima of V .

I For a zero mass ground state we should require V ′ = V ′′ = 0.
I For it to be the absolute minimum we should also have V ′′′ = 0

and V ′′′′ > 0.
I However, we see that V ′′′ = 0 is only possible if φ = π mod(π) and

therefore only if θ = π.
I For θ = π there is always a stationary point at φ = π which,

however, for the case ε > 1, corresponds to a maximum (V ′′ < 0).
I Since V is bounded from below there should also be minima.
I Indeed, for ε = 1 + δ̄, δ̄ � 1, one easily finds two (degenerate)

minima.
I For ε = 1 the three stationary points degenerate at φ = π and the

stable minimum corresponds to a massless CP conserving
ground state.

Paolo Di Vecchia (NBI+NO) CP Copenhagen, 16.08.2018 28 / 70



I We can determine the solution around φ = π by writing φ = π − δ
and plugging it into V ′ getting

δ

(
δ2ε

6
+ 1− ε

)
= 0 .

I In this way we find again the solution δ = 0, which corresponds to
a maximum , for ε > 1, and two stable minima related by CP at

δ± = ±
√

6(ε− 1)

ε
.

I This can be seen from
V ′′

a

∣∣∣
δ=0

= 1− ε ;
V ′′

a

∣∣∣
δ±

= 2(ε− 1) .

I This implies that the solution with δ = 0 is a stable one for ε ≤ 1,
while the two other solutions are stable for ε > 1 .

I The twofold degeneracy at θ = π implies that CP is spontaneous
broken: the two states are transformed into each other by a CP
transformation.
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I Under CP U → U† =⇒ φ→ −φ and the two solutions are:

φ+ = π +

√
6(ε− 1)

ε
; φ− − 2π = −π −

√
6(ε− 1)

ε

I At ε = 1 there is a second order phase transition where the PNGB
becomes massless.

I Indeed the mass square is given by the second derivative of the
potential computed at the minimum, yielding

M2 = µ2(θ) + a = µ2 cosφ+ a ,

I Notice that M2 goes to zero for ε = 1, θ = φ = π.
I The second order phase transition is also signalled by the

divergence of the topological susceptibility (defined as the 〈Q Q〉
correlator at zero momentum) at ε = 1, θ = π.

I One gets

χQCD =
χYM

1 + a
µ2(θ)

=
χYMε cosφ
1 + ε cosφ

,

which diverges for ε = 1 at θ = φ = π.
Paolo Di Vecchia (NBI+NO) CP Copenhagen, 16.08.2018 30 / 70



1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

θ=πθ=0

φ

θ=1.58

Figure: Solutions of V ′(φ) = 0 are given by the intersections of the curve sinφ
(black) with the straight lines (θ − φ)/ε for θ = 0, θ = π and a generic value
taken to be θ = 1.58. Code color is as follows: ε < 1 green lines, ε = 1 red
lines, ε > 1 blue lines.
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Out[7]=

1 2 3 4 5 6

2

3

4

5

Figure: V (φ) at θ = π, and ε = 0.5 (green curve), ε = 1.0 (red) and ε = 2.0
(blue).
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Out[25]=

Figure: V (φ) for two values of θ on opposite sides of π and ε = 5. The true
minimum swaps abruptly as one goes through θ = π.
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I If we move away from θ = π while ε > 1 we can have different
situations.

I Below a critical ε(θ) there is only one minimum while above it an
extra couple of stationary points pops out.

I One of them is a local maximum, the other a local minimum.
I Which is the absolute minimum depends on θ.
I For θ < π the true minimum is at φ < θ while for θ > π it is at φ > θ.
I Precisely at θ = π there is a two-fold degeneracy easily

understood as due to the spontaneous breaking of CP.
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I This abrupt change in the minimum of the potential around θ = π
signals a first order phase transition all along the line
µ2eiθ = [−∞,−a2] ending at the second order phase transition
point θ = π, µ2 = a.
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QCD phase diagrams: Nf = 2

I In the case Nf = 2 with unequal masses (say, µ2
1 < µ2

2) the
equations to be solved are

ε1 sinφ1 = ε2 sinφ2 = θ − φ1 − φ2 ; εi ≡
µ2

i
a
.

I For θ = π the solutions are simply

φ1 = π ; φ2 = 0 or φ1 = 0 ; φ2 = π .

I The masses of the two pseudoscalar mesons are given by

M2
1,2 = a +

µ2
1(θ) + µ2

2(θ)

2
±

√√√√a2 +

(
µ2

1(θ)− µ2
2(θ)

2

)2

,

valid for arbitrary θ.
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I It is easy to check that the mass squared with the minus sign is
massless if the following condition is satisfied

a(µ2
2(θ) + µ2

1(θ)) =

(
µ2

1(θ)− µ2
2(θ)

2

)2

−

(
µ2

1(θ) + µ2
2(θ)

2

)2

.

I Notice that, if both µ2
1,2(θ) are positive, the previous condition

cannot be satisfied because the r.h.s. is always negative, while the
l.h.s. is always positive.

I In particular, it cannot be satisfied at θ = 0.
I But at θ = φ1 = π, the previous condition becomes

a(µ2
2 − µ2

1) = µ2
1µ

2
2 =⇒ 1

a
+

1
µ2

2
=

1
µ2

1
.

I This means that, if the condition
1
µ2

1
− 1
µ2

2
≥ 1

a

is fulfilled, CP is unbroken because θ − φ1 − φ2 = 0.
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I Although the second solution conserves CP, it does not
correspond to the absolute minimum.

I On the other hand, if µ−2
1 < µ−2

2 + a−1 not even the first solution
corresponds to a minimum and other solutions take over.

I We see clearly that, as in the Nf = 1 case, the critical surface
µ−2

1 = µ−2
2 + a−1 separates the situation with a single solution

from the one with several solutions.
I In the latter case CP is spontaneously broken and the ground

state jumps as we go from θ < π to θ > π.
I On the critical surface there is a massless excitation and the QCD

topological susceptibility blows up.
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I For the case Nf = 2 at θ = π, we find a critical surface
characterized by (µ2

1 < µ2
2)

1
µ2

1
=

1
µ2

2
+

1
a

where there is a massless excitation and the QCD topological
susceptibility blows up.

I In the region where

1
µ2

1
>

1
µ2

2
+

1
a

there is only one solution and CP is conserved (θ = φ1 + φ2),
while in the region

1
µ2

1
<

1
µ2

2
+

1
a

there are more solutions and CP is spontaneously broken
(θ 6= φ1 + φ2).

I For equal masses CP is always spontaneously broken.
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Nf = 2 with equal masses
I Potential for µ2

1 = µ2
2 ≡ µ2 and φ1 = φ2 ≡ φ:

2
aF 2

π

V =
1
2

(θ − 2φ)2 − 2ε cosφ ; ε =
µ2

a

I Minimization equation:

θ − 2φ = ε sinφ

I For ε << 1 its solution is given by

φ =
θ

2
− ε

2
sin

θ

2
+
ε2

4
sin θ +O(ε3)

Since θ − 2φ 6= 0 CP is always broken (spontaneously at θ = π)
and the potential becomes

2
F 2
π

V ∼ a
(
−2ε cos

θ

2
− ε2

2
sin2 θ

2
+O(ε3)

)
that, if θ = π, becomes very flat (goes to zero) for a >> µ2!
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I In particular, at θ = π, it becomes of the order aε2 = µ4

a and in
principle we should have added terms of order µ4 to our effective
Lagrangian.

I However, these terms of order µ4 are negligible (at large N) with
respect to those that we have found of order µ4

a and cannot
change this result.

I At θ = π the two masses are

M2
1 =

µ2ε

2
+O(ε2) ; M2

2 = 2a +
µ2ε

2
+O(ε2)

I When a becomes very large

M2
1 → 0 ; M2

2 →∞
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I Actually, by writing the potential as follows

2
aF 2

π

V =
1
2

(θ − φ1 − φ2)2 − ε (cosφ1 + cosφ2) ; ε ≡ µ2

a

we get the following minimization conditions:

θ − φ1 − φ2 = ε sinφ1 = ε sinφ2

I At θ = π we have two solutions that break spontaneously flavor
symmetry:

φ1 = π, φ2 = 0 ; φ1 = 0, φ2 = π

I They correspond to two other minima of the potential, but they are
not absolute minima.

I In fact, at the two minima, the potential is exactly vanishing, while
the potential corresponding to the absolute minimum, discussed
above, is negative.
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QCD phase diagrams: Nf > 2
I We have to solve the following equations:

µ2
i sinφi = a

θ − Nf∑
i=1

φi

 ; i = 1 . . .Nf

I For θ = π we have the following solution that generalizes to Nf
flavors what we found for two flavors:

φ1 = π ; φ2 = φ3 = · · · = φNf = 0 ; µ2
1 ≤ µ2

i for i 6= 1 .

I It can be immediately checked that the determinant of the mass
matrix is positive if the condition

∆ ≡ 1
µ2

1
− 1

a
−

Nf∑
i=2

1
µ2

i
> 0

is satisfied.
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I In the corresponding region of parameter space we have a CP
conserving stable solution since θ −

∑Nf
i=1 φi = 0.

I On the surface where the inequality sign is replaced by an
equality, the topological susceptibility diverges and there is a
massless state,

I This signals a second order phase transition.
I In the region where, instead, ∆ < 0, the solution ceases to be a

minimum and we have to look for new solutions corresponding to
minima where we will find that CP is spontaneously broken.
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I For arbitrary Nf and θ = π, the critical surface is characterized by
(µ2

1 < µ2
i )

1
µ2

1
=

Nf∑
i=2

1
µ2

i
+

1
a

where there is a massless excitation and the QCD topological
susceptibility blows up.

I In the region where

1
µ2

1
>

Nf∑
i=2

1
µ2

i
+

1
a

CP is conserved, while in the region

1
µ2

1
<

Nf∑
i=2

1
µ2

i
+

1
a

CP is spontaneously broken.
I For all equal masses CP is always spontaneously broken.
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CP violation
I If θ 6=

∑
i φi CP is broken and one can compute quantities that

break CP.
I We get

Γ(η → π+π−) = θ2 · (135 KeV ) :
Γ(η → π+π−)

Γtot
= 159 θ2

I From experiments we get:

Γ(η → π+π−)

Γtot
< 3 · 10−4

that gives an upper limit to the value of θ < 10−3

I Stronger constraint from electric dipole moment of the neutron

Dn =
1

4π2mN
· gπNN ḡπNN log

mN

mπ
= 3.6 · 10−16θcm

in units where the electric charge e = 1.
I The experimental limit is:

Dn < 6 · 10−26 =⇒ θ < 10−9
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Including the axion

I θ is very small and actually consistent with zero.
I Can we make it to be zero in a natural way?
I The vanishing of mu would be a way because it allows to rotate θ

away.
I But mu seems to be 6= 0.
I The Peccei-Quinn solution of the strong CP problem includes in

the matter sector of QCD some new d.o.f. with an extra U(1)PQ
symmetry that is broken by an anomaly exactly as U(1)A.
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I Denoting with αPQthe coefficient of the U(1)PQ anomaly and with
Fα the scale of its spontaneous breaking, we can extend our
previous Lagrangian [Sannino and DV, 2014] as follows:

L =
1
2

Tr(∂µU∂µU†) +
1
2
∂µN∂µN† +

Fπ
2
√

2
Tr
(
µ2(U + U†)

)
+

−θQ +
Q2

aF 2
π

+
i
2

Q(x)
(

Tr(log U − log U†) + αPQ(log N − log N†)
)

where

U(x) =
Fπ√

2
ei
√

2Φ(x)/Fπ ; N(x) =
Fα√

2
ei
√

2α(x)/Fα

Φ = ΠaT a +
S√
Nf
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I Under the two U(1) transformations:

U → eiβU ; N → eiγN ,

the effective Lagrangian transforms as follows:

L→ L− (Nfβ + aPQγ) q(x)

I It is invariant under the U(1) determined by the condition:
Nfβ + aPQγ = 0.

I This is an anomaly-free U(1) subgroup, whose spontaneous and
explicit breaking (by quark masses) implies a new,
pseudo-Goldstone boson, the (Peccei-Quinn-Weinberg-Wilczek)
axion.
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I Restricting to the fields in the Cartan sub-algebra of the QCD
pseudoscalar mesons with

√
2

Fπ
vi → −φi +

√
2

Fπ
vi , the previous

Lagrangian becomes

L =
1
2

Nf∑
i=1

∂µvi∂
µvi +

F 2
π

2

Nf∑
i=1

µ2
i cos

(
−φi +

√
2

Fπ
vi

)
+

Q2

2χYM

+
1
2

(∂µσ)2 −Q

θ − Nf∑
i=1

φi − β +

√
2

Fπ

Nf∑
i=1

vi +
αPQ
√

2
Fα

σ

 ,

where again we have allowed for a non-trivial expectation 〈U〉.
I We have also introduced an expectation value for α(x) and a

shifted axion field σ as α(x) = −αPQ
√

2
Fα

β + σ(x).
I We determine the phases φi and β by minimizing

V (φi , β) = −F 2
π

2

Nf∑
i=1

µ2
i cosφi +

χYM

2

θ − Nf∑
i=1

φi − β

2

.
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I The stationary points of this potential are solutions of the
equations

−F 2
π

2
µ2

i sinφi + χYM(θ −
∑

i

φi − β) = 0 ; i = 1,2, . . . ,Nf

θ −
∑

i

φi − β = 0 ,

I They are given by

φ̂i = 0 mod (π) ; β̂ = θ −
Nf∑

i=1

φi .

I The choice

φ̂i = 0 ; i = 1,2, . . . ,Nf ; β̂ = θ

corresponds to the minimum of the potential.
I The other choices correspond to maxima or to saddle points.
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I We get

L = −V (φ̂i , β̂) +
1
2

Nf∑
i=1

∂µvi∂
µvi +

F 2
π

2

Nf∑
i=1

µ2
i

(
cos

(√
2

Fπ
vi

)
− 1

)
+

1
2

(∂µσ)2

−χYM

2

√2
Fπ

Nf∑
i=1

vi +
αPQ
√

2
Fα

σ

2

+
1

2χYM

Q − χYM

√2
Fπ

Nf∑
i=1

vi +
αPQ
√

2
Fα

σ

2

.

I The mass spectrum of the system can be found by diagonalizing
the quadratic part

L2 =
1
2

Nf∑
i=1

∂µvi∂
µvi −

1
2

Nf∑
i=1

µ2
i v2

i −
χYM

2

√2
Fπ

Nf∑
i=1

vi +

√
2αPQ

Fα
σ

2

+
1
2

(∂µσ)2 =
1
2

Nf +1∑
a=1

∂µHa∂
µHa −

1
2

HT AH ,
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I H is an Nf + 1-column vector and A is the squared-mass matrix

H =



σ
v1
v2
·
·

vNf

 ; A =


b2a ba ba ba . . . ba
ba µ2

1 + a a a . . . a
ba a µ2

2 + a a . . . a
. . . . . . . . . . . . . . . . . .

ba a a a . . . µ2
Nf

+ a

 .

I The mass spectrum is the result of the diagonalization of A and
can be read off from

det
(

p2δij − Aij

)
= p2

Nf∏
i=1

(p2 − µ2
i )

1− a

 Nf∑
i=1

1
p2 − µ2

i
+

b2

p2


=

Nf +1∏
i=1

(
p2 −M2

i

)
; a =

2χYM

F 2
π

; b =
FπαPQ

Fα

Mi are the masses of the physical states that diagonalize the
mass matrix.
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I By going to p2 = 0

det A = ab2
Nf∏

i=1

µ2
i =

Nf +1∏
j=1

M2
j ,

where the product on the r.h.s. includes the axion as well as the
Cartan PNGB masses.

I For small b, the mass of the axion is given by looking for a zero at
small p2 of the term in square brackets. Neglecting p2 with
respect to µ2

i one obtains

M2
axion =

b2

1
a +

∑Nf
i=1

1
µ2

i

; b ≡ FπαPQ

Fα

I This reduces to the usual expression for axion mass in the limit
a, µ2

s � µ2
u,d .
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I Alternatively using the definition of b and χQCD, we can write

M2
axion =

2α2
PQ

F 2
α

χQCD ,

another formula often used in the literature.
I Finally, we get the following two-point correlation function

〈Q(x)Q(y)〉F .T . = iχYM
p2∏Nf

i=1(p2 − µ2
i )∏Nf +1

i=1 (p2 −M2
i )

=
iχYM[

1− a
(∑Nf

i=1
1

p2−µ2
i

+ b2

p2

)] ,
I It vanishes at p2 = 0 signalling that the topological susceptibility in

a theory where QCD is “augmented” by another sector that
includes the axion, is zero.

I This is consistent with the fact that the dependence on the θ
parameter disappears.
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I For the physically interesting case we have to take b � 1 so that
the spectrum should contain a very light pseudo-scalar, the
physical axion, which is the original field σ up to an O(b)
admixture of PNGBs.

I This is all well known. We will now discuss how things take an
interesting turn when we go from properties of the spectrum (i.e.
of small fluctuations around the minimum of V ) to those of the full
potential at a finite distance from its minimum.

Paolo Di Vecchia (NBI+NO) CP Copenhagen, 16.08.2018 56 / 70



The axion potential
I The axion potential is given by

V (vi , σ) =

=
F 2
π

2

− Nf∑
i=1

µ2
i cos

(√
2

Fπ
vi

)
+

a
2

 Nf∑
i=1

√
2

Fπ
vi +

√
2αPQ

Fα
σ

2


I It is the same as that obtained in QCD with the substitutions:

φi → −
√

2
Fπ

vi ; θ →
√

2αPQ

Fα
σ

I The minimum of the potential must satisfy the two equations:

∂V
∂vi

=
Fπ√

2

 Nf∑
i=1

µ2
i sin

(√
2

Fπ
vi

)
+ a

 Nf∑
i=1

√
2

Fπ
vi +

√
2αPQ

Fα
σ

 = 0
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I and

∂V
∂σ
∼

 Nf∑
i=1

√
2

Fπ
vi +

√
2αPQ

Fα
σ

 = 0

I In order to see if one gets a minimum, one must compute the
mass matrix, i.e. the matrix of the second derivatives.

I Usually the axion potential is computed by integrating out the
other (mesonic) fields since their mass is much bigger than the
axion mass because Fα >> Fπ.

I This is done
I by imposing the conditions ∂V

∂vi
= 0 at fixed σ

I under the assumption (well satisfied at zero temperature) that
εi ≡ µ2

i
a << 1.
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I For Nf = 1 one obtains the following axion potential

Vaxion(σ) = −F 2
π

2
µ2 cos

(√
2αPQ

Fα
σ

)
+O(

µ2

a
)

I For Nf = 2 one gets:

Vaxion(σ) = −F 2
π

2

√
(µ2

1 + µ2
2)2 − 4µ2

1µ
2
2 sin2

(
αPQσ√

2Fα

)
+ O(µ2

i /a)

I But, is this always allowed?
I In particular, is it allowed near the point where the PNGB

becomes massless?
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The axion potential: Nf = 1
I Let us consider, for simplicity, the case of one flavor, where the

previous equations become:

Fπ√
2
µ2 sin

(√
2

Fπ
v

)
+ a(v + bσ) = 0

ba(v + bσ) = 0

I They are satisfied if v = σ = 0 or if -
√

2
Fπ

v =
√

2αPQ
Fα

σ = π.
I To decide which is a minimum we compute the matrix of the sec.

derivatives:(
b2a ab
ab µ2 cos

(√
2

Fπ
v
)

+ a

)
; b ≡ αPQFπ

Fα

whose eigenvalues give the mass of the axion and of the
pseudoscalar meson.
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I v = σ = 0 is a minimum with both masses being positive.
I The other is a saddle point with one mass2 being positive and the

other negative (tachyon).

I If ε = µ2

a << 1 one can neglect the term with the sin, integrating
out the mesonic field, and one gets:

v + bσ = 0

I Inserting it in the potential we get

Vaxion(σ) = −F 2
π

2
µ2 cos

(√
2αPQ

Fα
σ

)
+O(

µ2

a
)

In this way we have integrated out the heavy meson fields.
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I If instead µ2

a >> 1, we get a small value for v

v = −aαPQFπ
µ2Fα

σ

I Inserted in the potential, we get

Vaxion(σ) =
χYM

2

(√
2αPQσ

Fα

)2

+O(
a
µ2 )

Also in this case we have integrated out the heavy meson fields.
I In this regime the axion mass is determined by a and not by µ2.
I The 2π periodicity of the axion potential requires in this regime a

spike at
√

2αPQ
Fα

σ = π.
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I There is, however, a third regime where |1− µ2

a | << 1.
I Taking the mass matrix around the saddle point:

−
√

2
Fπ

v =

√
2αPQ

Fα
σ = π

I In this case the mass matrix becomes:

A =

(
b2a ab
ab −µ2 + a

)
; b ≡ αPQFπ

Fα
I If |µ2 − a| ∼ ba, then the two eigenvectors are strongly mixed w.r.t.

the original basis (axion-PNGB).
I The mixing is maximal if µ2 = a(1− b2) and A becomes

A =

(
b2a ab
ab b2a

)
whose eigenvectors are (1,±1) with eigenvalues b2a± ba.

I In this range of values of µ
2

a and σ, it is not possible to describe
the system only in terms of an axion potential.

I The potential must involve both light fields.
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The axion potential: Nf = 2,3
I In the real world the quarks playing a role at low energy are the

up, down and strange.
I At zero temperature, the quantitative solution of the U(1) problem

requires µ2
u < µ2

d << µ2
s ∼ a.

I The ratios µ2
u : µ2

d : µ2
s : a are about 1 : 2 : 40 : 18.

I Use these numbers together with the results we obtained from the
large-N effective action approach, even if in the real world N = 3.

I Quark mass ratios are expected to be constant below the QCD
deconfining temperature (they depend on phenomena occurring at
the electroweak-breaking scale).

I The temperature dependence of χYM could possibly differ from
that of the quark condensate implying a possible (strong?)
T -dependence of µ2

i /a ∼ −
mi<ψ̄iψi>

χYM
.

I An increase of that ratio by an order of magnitude would bring us
inside the CP broken region.
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I The available lattice measurements do not seem to favor this
possibility; but better measurements of <ψ̄iψi>

χYM
are needed.

I Consider the case of two or three quark flavors of different
masses and allow for arbitrary ratios µ2

i /a.
I The stationary points of the potential are

√
2αPQσ

Fα
= 0, πmod (2π) ;

√
2vi

Fπ
= 0, π

I The absolute minimum is as usual the trivial one σ = vi = 0.
I In general, it is legitimate to integrate out the PNGB degrees of

freedom by minimizing their potential at fixed σ and then insert the
solution v̂i(σ) in V (σ, vi).

I If µ2
i � a this can be easily done and for Nf = 2 one gets the

well-known potential:

Vaxion(σ) = −F 2
π

2

√
(µ2

1 + µ2
2)2 − 4µ2

1µ
2
2 sin2

(
αPQσ√

2Fα

)
+ O(µ2

i /a)

[Veneziano and DV, 1980]
[ Grilli di Cortona, Hardy, Pardo Vega and Villadoro, 2016]
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I For Nf = 3 the result still holds up to corrections O(µ2
u,d/µ

2
s).

I We have seen that the condition for having a massless boson (in
the absence of the axion) is

1
µ2

u
=

1
a

+
1
µ2

d
+

1
µ2

s
∼ 1

a
+

1
µ2

d
⇒ a(µ2

d − µ2
u) = µ2

uµ
2
d .

I Precisely around this point we expect a large mixing to occur
between the would-be massless PNGB and the axion.

I We have solved, using Mathematica, the minimization conditions
at fixed σ and reconstructed in this way the axion potential.

I We then clearly see that, at small µ2
u,d/a the potential has a

regular maximum around
√

2αPQσ
Fα

= π which coincides with the
one usually used for the axion and agrees well with it elsewhere.
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I As we increase µ2
u,d/a above the critical value 1− µ2

u/µ
2
d , the

potential is lower that the previous potential even at
√

2αPQσ
Fα

= π
and, by periodicity must develop a spike at that point.

I As we finally go much beyond the critical point, the true potential
has nothing to do with the conventional one.
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Figure: Comparing the conventional axion potential (yellow curves) with the
“exact" one (blue curves) for Nf = 2, µ2

d = 2µ2
u and at three values of µ2

u/a:
0.25,0.5 (critical value), 2.5. In the first two cases the two potentials (but not
necessarily their derivatives) agree at

√
2

Fα
σ = ±π while in the third

(overcritical) case even the values of the potentials disagree at the boundary
of the periodicity interval.
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Conclusions and outlook
I Using the effective Lagrangian for the pseudoscalar mesons valid

at low energy and below the deconfinement temperature, we have
seen that, for certain values of the parameters (a, µ2

i ), there is a
second order phase transition.

I This is signalled by the fact that one of the mesons becomes
massless and the topological susceptibility diverges.

I Including an axion in the previous Lagrangian one can eliminate
the θ dependence of the physical quantities and compute the
axion potential.

I This potential is the one that is normally used for cosmological
applications for the physical value of the parameters at T = 0.

I It is possible, however, that their dependence on T could bring
them into the region where one meson becomes massless.

I In this case one cannot compute the axion potential, as done in
the literature, assuming that εi <<

µ2
I

a .
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I Lattice QCD calculations, measuring both χYM and < ψ̄iψi >pl by
the same group and with the same Monte Carlo configurations,
are needed to answer this question.

I Use holography with the model of Witten-Sakai-Sugimoto to study
the temperature dependence following the approach by
[Bigazzi et al, 2015 +2017 ].
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