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Figure 4. Left: the half I-band luminosity L1/2 versus half-light mass M1/2 for a broad population of spheroidal galaxies. Middle: the dynamical I-band
half-light mass-to-light ratio ϒI

1/2 versus M1/2 relation. Right: the equivalent ϒI
1/2 versus total I-band luminosity LI = 2 L1/2 relation. The solid line in the

left-hand panel guides the eye with M1/2 = L1/2 in solar units. The solid, coloured points are all derived using our full mass likelihood analysis and their
specific symbols/colours are linked to galaxy types as described in Fig. 2. The I-band luminosities for the MW dSph and GC population were determined by
adopting M92’s V − I = 0.88. All open, black points are taken from the literature as follows. Those with M1/2 > 108 M⊙ are modelled using equation (2)
with σlos and r1/2 culled from the compilation of Zaritsky et al. (2006): triangles for dwarf ellipticals (Geha, Guhathakurta & van der Marel 2003), inverse
triangles for ellipticals (Jørgensen, Franx & Kjaergaard 1996; Matković & Guzmán 2005), plus signs for brightest cluster galaxies (Oegerle & Hoessel 1991)
and asterisks for cluster spheroids, which, following Zaritsky et al. (2006), include the combination of the central brightest cluster galaxy and the extended
intracluster light. Stars indicate globular clusters, with the subset of open, black stars taken from Pryor & Meylan (1993).

more massive counterparts (Bovill & Ricotti 2009; Bullock et al.
2009).

4.2 The global population of dispersion-supported
stellar systems

A second example of how accurate M1/2 determinations may be
used to constrain galaxy formation scenarios is presented in Fig. 4,
where we examine the relationship between the half-light mass M1/2

and the half-light I-band luminosity L1/2 = 0.5LI for the full range
of dispersion-supported stellar systems in the Universe: globular
clusters, dSphs, dwarf ellipticals, ellipticals, brightest cluster galax-
ies and extended cluster spheroids. Each symbol type is matched
to a galaxy type as detailed in the caption. We provide three rep-
resentations of the same information in order to highlight different
aspects of the relationships: M1/2 versus L1/2 (left-hand panel),
the dynamical I-band mass-to-light ratio within the half-light ra-
dius ϒ I

1/2 versus M1/2 (middle panel) and ϒ I
1/2 versus total I-band

luminosity LI (right-hand panel).
Masses for the coloured points are derived using our full mass

likelihood approach and follow the same colour and symbol con-
vention as in Fig. 2. All of the black points that represent galaxies
were modelled using equation (2) with published σlos and r1/2 values
from the literature.13 The middle and right-hand panels are inspired
by (and qualitatively consistent with) figs 9 and 10 from Zaritsky,
Gonzalez & Zabludoff (2006), who presented estimated dynamical
mass-to-light ratios as a function of σlos for spheroidal galaxies that
spanned two orders of magnitude in σlos.

We note that the asterisks in Fig. 4 are cluster spheroids (Zaritsky
et al. 2006), which are defined for any galaxy cluster to be the sum
of the extended low-surface brightness intracluster light component
and the brightest cluster galaxy’s light. These two components are
difficult to disentangle, but the total light tends to be dominated

13 The masses for the open, black stars (globular clusters) were taken directly
from Pryor & Meylan (1993).

by the intracluster piece. One might argue that the total cluster
spheroid is more relevant than the brightest cluster galaxy because
it allows one to compare the dominant stellar spheroids associated
with individual dark matter haloes over a very wide mass range
self-consistently. Had we included analogous diffuse light compo-
nents around less massive galaxies (e.g. stellar haloes around field
ellipticals) the figure would change very little, because halo light is
of minimal importance for the total luminosity in less massive sys-
tems (see Purcell, Bullock & Zentner 2007). One concern is that the
central cluster spheroid mass estimates here suffer from a potential
systematic bias because they rely on the measured velocity disper-
sion of cluster galaxies for σlos rather than the velocity dispersion of
the cluster spheroid itself, which is very hard to measure (Zaritsky
et al. 2006).14 For completeness, we have included brightest cluster
galaxies on this diagram (plus signs) and they tend to smoothly fill
in the region between large Es (inverse triangles) and the cluster
spheroids (asterisks).

There are several noteworthy aspects to Fig. 4, which are each
highlighted in a slightly different fashion in the three panels. First,
as seen most clearly in the middle and right-hand panels, the dy-
namical half-light mass-to-light ratios of spheroidal galaxies in the
Universe demonstrate a minimum at ϒ I

1/2 ≃ 2–4 that spans a re-
markably broad range of masses M1/2 ≃ 109−11 M⊙ and luminosi-
ties LI ≃ 108.5−10.5 L⊙. It is interesting to note the offset in the av-
erage dynamical mass-to-light ratios between globular clusters and
L⋆ ellipticals, which may suggest that even within r1/2, dark matter
may constitute the majority of the mass content of L⋆ Es. Neverthe-
less, it seems that dark matter plays a clearly dominant dynamical
role (ϒ I

1/2 � 5) within r1/2 in only the most extreme systems (see
similar results by Dabringhausen, Hilker & Kroupa 2008; Forbes
et al. 2008, who study slightly more limited ranges of spheroidal
galaxy luminosities). The dramatic increase in dynamical half-light

14 In addition, concerns exist with the assumption of dynamical equilibrium.
However, Willman et al. (2004) demonstrated with a simulation that using
the intracluster stars as tracers of cluster mass is accurate to ∼10 per cent.
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Fits with Burkert:

Constant surface density
� �0 =�0r0 ⇥ 120M�/pc2

(over many magnitudes !?)
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Dwarf spheroidals II

Jeans equation relates
kinematics + light to
total mass
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dispersion anisotropy
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Figure 1. Projected velocity dispersion profiles for eight bright dSphs from Magellan/MMFS and MMT/Hectochelle data. Overplotted are profiles calculated from
isothermal, power-law, NFW and cored halos considered as prospective “universal” dSph halos (Section 5). For each type of halo we fit only for the anisotropy and
normalization. All isothermal, NFW, and cored profiles above have normalization Vmax ∼ 10–25 km s−1–see Table 3. All power-law profiles have normalization
M300 ∼ (1–2) × 107 M⊙.
(A color version of this figure is available in the online journal.)

case of constant anisotropy, the Jeans equation has the solution
(e.g., Mamon & Łokas 2005)

νv̄2
r = Gr−2β

∫ ∞

r

s2β−2ν(s)M(s)ds. (2)

Projecting along the line of sight, the mass profile relates to
observable profiles, the projected stellar density, I (R), and
velocity dispersion, σp(R), according to (Binney & Tremaine
2008, “BT08” hereafter)

σ 2
p(R) = 2

I (R)

∫ ∞

R

(
1 − β

R2

r2

)
νv̄2

r r√
r2 − R2

dr. (3)

To estimate dSph masses via the Jeans equation we therefore
employ the following strategy: (1) adopt a simple analytic profile
for I (R) from the literature; (2) adopt a parametric model for
M(r); and (3) find the halo parameters that, via Equations (2)
and (3), best reproduce the empirical velocity dispersion profiles
shown in Figure 1.

3.1. Stellar Density

Stellar surface densities of dSphs are typically fit by Plummer
(1911), King (1962) and/or Sersic (1968), profiles (e.g., Irwin
& Hatzidimitriou 1995; McConnachie & Irwin 2006; Belokurov
et al. 2007). The Plummer profile, I (R) = L(πr2

half)
−1[1 +

R2/r2
half]

−2 where L is the total luminosity, is the simplest as
it has only a single shape parameter, the projected half-light
radius.5 It is also the only profile with published parameters for
all dSphs, since the concentration parameters of King and Sersic
profiles are not well constrained by the sparse data available for
the faintest dSphs. Therefore, in what follows we adopt the
Plummer profile to characterize dSph stellar densities.

Given a model I (R) for the projected stellar density, one
recovers the three-dimensional density from (BT08)

ν(r) = − 1
π

∫ ∞

r

dI

dR

dR√
R2 − r2

. (4)

Thus, for the Plummer profile we have ν(r) = 3L(4πr3
half)

−1[1+
r2/r2

half]
−5/2.

We note that even though dSph surface brightness data can
be fit adequately by a variety of density profiles, the choice of
profile is not trivial. Evans et al. (2009) demonstrate that, even
when the gravitational potential is dominated by dark matter,
the adopted shape of the stellar density profile can profoundly
affect the inferred shape of M(r) at small radii. In what follows,
while for simplicity we present only the results obtained using
the Plummer profile, we explicitly identify any results that are
strongly sensitive to this choice (Section 3.5.3).

5 Throughout this work, we define rhalf as the two-dimensional half-light
radius, i.e., the radius of the cylinder that encloses half of the total luminosity.

[Walker+ ’09]

One finds ⇥(r) and cored profile is preferred.

(though arbitrary anisotropy can reconcile with NFW)
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HYPOTHESIS OF 
DEGENERATE FERMIONS 
IN DARK MATTER HALOS

• Pauli exclusion can forbid a central density cusp
…can explain cored profiles 

The largest density is observed in smallest systems, so 
need to focus on the smallest dwarf galaxies 

Dwarf galaxies, dark matter dominated, would be 
quantum degenerate spheres of fermi particles (1070 of them)  

The particle mass is bounded from below, à la Tremaine-Gunn 
[Tremaine-Gunn’79, … Gerhard-Spergel ’92,…,Chavanis+ ‘97, Bilić+ ’99,  

Boyarski+ ‘09…,Destri DeVega Sanchez ’13; Domcke-Urbano ’15]
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AUTO GRAVITATING FERMION GAS
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THOMAS FERMI - DIMENSIONLESS

…and all solutions are just rescalings.
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CUT THE 
SMALL-SCALE 

EXTRA SATELLITES 
OF CDM ? 
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unseen low masses 

Dramatic slope,  
if extrapolated  
to low masses
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SO, QUANTUM NATURE PREDICTS

Lane-Emden solution.
we approximate  

very well by

• A minimum for total mass Mh and size Rh

• The shape of fully degenerate profile:

…can we test this profile?



• We observe the STAR velocity DISPERSION  
(line of sight only, 𝜎r)

• Jeans equation predicts it, from given mass model M(r)

• Stellar dispersion anisotropy 𝜷 unknown

• and it’s hard to measure stars for small galaxies

NO: NONTRIVIAL PROBLEM ALREADY 
TO ESTIMATE THE HALO SIZE/MASS
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On the other hand, in order to make contact with the

nondegenerate case we will use a standard Burkert cored
profile
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It is finally useful to note that the mass enclosed
within r < R
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for the degenerate halo M
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A. Jeans equation

In the assumption that the stellar component is virial-
ized within the background gravitational potential dom-
inated by the DM component, the spherical Jeans equa-
tion
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allows us to relate the velocity dispersion profile of stars
to the DM mass distribution M(r). In the above relation,
G is the Newton constant, n⇤(r) is the stellar number
density, �2

r

is the radial velocity dispersion of stars and
the stellar velocity anisotropy � ⌘ 1��

2

?/�
2

r

in principle
depends on radius. Due to the small size of the object
under consideration, we first consider the case of zero
anisotropy, and later comment on its role. In the later
sections, we will also marginalize on the anisotropy as a
nuisance parameter.

A number of other assumptions, like the possible co-
existence of more than one stellar component, as their
complete virialization, are further factors of uncertain-
ties which can not be removed.

The stellar component for the dwarf spheroidal galax-
ies is quite satisfactorily modeled by means of a Plummer
density profile with diverse scale radii R⇤:
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Eq. (8) can be integrated in favor of �2

r

, once the dark
matter mass distribution M(r) is determined by the DM
density eq. (7). The resulting stellar velocity dispersion
is shown in figure 2, for three representative cases of R
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smaller, equal or larger than the stellar scale radius R⇤.
The profiles shown are illustrative and are obtained by
normalizing to a fixed surface density ⌃
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FIG. 2. Stellar velocity dispersion profiles (solid) for represen-
tative DM core radii. The dashed curves show the line-of-sight
projected dispersion velocity profiles.
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We see from Fig. 2 that in the case of DM halo smaller

than the Plummer radius, i.e. R
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 R⇤, the stellar ve-
locity dispersion starts to fall as soon as the DM density
vanishes, reflecting the decrease of the gravitational po-
tential. On the other hand, if the DM distribution is more
extended than the stellar one, i.e. R
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� R⇤, the stellar
velocity dispersion has to increase in the regions where
the Plummer density drops. In few words, the slope of
the velocity dispersion, @ ln�
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/@ ln r, is connected with
the characteristic sizes R⇤ and R
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of the galactic struc-
ture and can, thus, be used to determine the DM distri-
bution.

In order to compare with observational data, it should
be taken into account that the measurable quantity is the
velocity dispersion along the line of sight (LOS) which is
given by
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R1
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2 is the projected
stellar (surface) density. In Fig. 2, we show with dashed
lines the LOS dispersion velocities for the three cases
previoulsly described, showing that they retain the same
behaviour of �2

r

. This shows that the observed LOS ve-
locity dispersion profile �

2
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(R) can be used to constrain
the size of the DM core.

B. The role of anisotropy

As is well known ad as we will see in detail, the
unknown stellar velocity dispersion anisotropy � limits
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h

smaller, equal or larger than the stellar scale radius R⇤.
The profiles shown are illustrative and are obtained by
normalizing to a fixed surface density ⌃

0

= ⇢

0

R

h

= 1. In
fact, once the radius R

h

is fixed, the DM central density
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FIG. 2. Stellar velocity dispersion profiles (solid) for represen-
tative DM core radii. The dashed curves show the line-of-sight
projected dispersion velocity profiles.

⇢

0

or the surface density ⌃

0

represent just a multiplica-
tive constant factor for the mass function M(r) and do
not affect the radial dependence of �2

r

.
We see from Fig. 2 that in the case of DM halo smaller

than the Plummer radius, i.e. R

h

 R⇤, the stellar ve-
locity dispersion starts to fall as soon as the DM density
vanishes, reflecting the decrease of the gravitational po-
tential. On the other hand, if the DM distribution is more
extended than the stellar one, i.e. R

h

� R⇤, the stellar
velocity dispersion has to increase in the regions where
the Plummer density drops. In few words, the slope of
the velocity dispersion, @ ln�

2

r

/@ ln r, is connected with
the characteristic sizes R⇤ and R

h

of the galactic struc-
ture and can, thus, be used to determine the DM distri-
bution.

In order to compare with observational data, it should
be taken into account that the measurable quantity is the
velocity dispersion along the line of sight (LOS) which is
given by

�

2

los

(R) =

1

⌃⇤

Z 1

R

dr

2

n⇤p
r

2 �R

2

�

2

r


1� �

R

2

r

2

�
(10)

where ⌃⇤(R) =

R1
R

dr

2

n⇤(r)/
p
r

2 �R

2 is the projected
stellar (surface) density. In Fig. 2, we show with dashed
lines the LOS dispersion velocities for the three cases
previoulsly described, showing that they retain the same
behaviour of �2

r

. This shows that the observed LOS ve-
locity dispersion profile �

2

los

(R) can be used to constrain
the size of the DM core.

B. The role of anisotropy

As is well known ad as we will see in detail, the
unknown stellar velocity dispersion anisotropy � limits
severely the possibility to extract the DM core radius R

h

from observational data. Indeed, in the absence of di-
rect information, the quantity � has to be treated as a
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   too large cores excluded  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• Effect of anisotropy, e.g. β=1 
 
   large core gives again  
   a flattish  𝜎*,r … ! 



• Time:   
 
 
 
 
should be larger than the age of Galaxy ~ 1010 y. 

• Puts a limit on halo mass Mh                    [Gerhard Spergel ’92]

TOTAL MASS LIMITED BY 
DYNAMICAL FRICTION

Satellites would have fallen in the MW halo…  
…due to gravitational friction

[Chandrasekar formula, e.g. Binney Tremaine 2008 Read+ ’06; Just ’11, etc]

6

FIG. 3. Averaged stellar velocity dispersion in two bins, taken
here as int = [0, r⇤] (red) and ext = [r⇤, 3r⇤] (yellow), for
� = 0. The dashed curves show the same for a Burkert profile
(nondegenerate fermions).

suming constant �, we find

�

2

los
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1

N⇤(R1
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2

)
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dr 4⇡r

2
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where the adimensional function F (r,�;R
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with B = min {r,R
2

}.1
For illustrative purposes, we show in Fig. 3 as solid

lines the behaviour of the average LOS velocity dispersion
calculated in two bins [0, R⇤] and [R⇤, 3R⇤] as a function
of the DM core radius R

h

, for � = 0. One can observe
that the average LOS dispersion velocity in the external
bin overshoots the internal one as soon as Rh/R⇤ & 2.
This demonstrates that even with two single bins, and
provided the uncertainties on the observed dispersion ve-
locity are not too large, one could constrain the DM core
size. For instance, if the observed dispersion velocities in
two or more bins in the vicinity of r ' R⇤ are approx-
imately constant, one can rule out the possibility that
DM extends much beyond the stellar component.

From the plot one can make also other remarks.
Clearly, the more the DM core extends beyond the stellar
component (Rh/R⇤ > 1) the less its actual density pro-
file beyond Rh is relevant for the stellar physics, because
the DM density is anyway constant in the region where
the stars trace the gravitational potential. On the other
hand, one can expect that if the DM core is smaller than
the stellar scale (Rh/R⇤ < 1) the actual shape of the DM
profile out of its core will influence the resulting stellar

1
The quantity N⇤(R1, R2) can be also calculated as N⇤(R1, R2) =R1
R1

dr 4⇡r2 n⇤(r)F (r,� = 0;R1, R2)

velocity dispersion. To show this effect, we have repeated
the analysis also for Burkert DM profiles, reported also
in Fig. 3 as dashed lines. As one can see, for Rh > R⇤
the solid and dashed curves are overlapping, i.e. the pre-
dicted dispersion is independent from the shape of the
DM profile, which makes the analysis more robust.

Unfortunately, as we shall discuss for the specific cases
of Segue I and Wilman I, the analysis outlined in this
section is considerably hampered by the large uncertain-
ties in each bin of the observed velocity dispersion. In
addition, it is also severely limited when one leaves un-
constrained the anisotropy. While one can hope that the
accuracy of the observational data will improve, the sit-
uation with the anisotropy is more dramatic; it would be
necessary to strongly limit � in order to extract useful
limits from the observational velocity dispersion data.

D. Dynamical friction

The mass of dwarf spheroidals can be limited from above
because they are subject to dynamical friction in the
Milky-Way DM halo. Their orbit decay with a charac-
teristic time scale that can be estimated from the Chan-
drasekhar’s formula [29]

t

fric

=

10

10

y

ln⇤

✓
D

60 kpc

◆
2

✓
v

220 km/s

◆✓
2 · 1010 M�

M

h

◆

(15)
where v is the velocity of the dwarf galaxy and D is
its distance from the Milky-Way center. The Coulomb
logarithm in the above equation is given by

ln⇤ = ln

✓
b

max

b

min

◆
, (16)

where b

max

and b

min

are the maximum and minimum
impact parameters. These can be estimated as [29, 35]:

b

max

= �
✓
d ln ⇢MW

dr

◆�1

' D

�

b

min

= max

⇢
R

h

,

GM

h

v

2

typ

�
(17)

where v

typ

is the virial velocity and we assumed that the
Milky Way DM density scales approximately as ⇢

MW

/
D

�� with � ' 2 in the vicinity of the objects considered.2
Chandrasekhar’s formula (15) is known to fail when

the mass of the mass M
h

of the satellite becomes compa-
rable to the mass of the host system that lies interior to
the satellite’s orbit and/or the density of host system is
constant, see e.g. [36]. In the cases of our interest, how-
ever, none of these conditions apply and eq. (15) pro-
vides a remarkably accurate description. By requiring

2
For degenerate cores, the halo radius Rh defined in eq. (A14) is

sufficiently close to the half mass radius of the DM distribution.



Are rising velocity dispersion profiles allowed?  

Compare with data
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LEO II ,  WILLMAN I
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-2 -1 0 1 2

-4

-3

-2

-1

0

Log rêR*

Lo
g
s
*,
lo
s

2

Rh êR* = 0.1

Rh êR* = 1

Rh êR* = 10

S0=1, b=1

‡ ‡

‡

0 10 20 30 40 50 60 70
0

2

4

6

8

10

r @pcD

s
*,
lo
s
@km
êsec
D

Willman I

r*=20pc,   distance=38 kpc

0 100 200 300 400
0

2

4

6

8

10

r @pcD

s
*,
lo
s
@km
êsec
D

Leo II

r*=177pc,   distance=205 kpc



2.55

4.85

8

11.5

11.5

25 25

25

50 50

Excluded
by

D
ynam

ical Friction

-1.0 -0.5 0.0 0.5 1.0

1.6

1.8

2.0

2.2

2.4

2.6

Log10 Rh [kpc]

Lo
g 1
0
Σ 0

[M
⊙
/p
c2
]

m [eV]
320 160 80 40 20

Leo II χ2

MARGINALIZING BETA 𝜷 - LEO II
Exclusion by data is not Parameter estimation

1𝜎 exclusion



2.55

4.85

8

11.5

11.5

25 25

25

50 50

Excluded
by

D
ynam

ical Friction

-1.0 -0.5 0.0 0.5 1.0

1.6

1.8

2.0

2.2

2.4

2.6

Log10 Rh [kpc]

Lo
g 1
0
Σ 0

[M
⊙
/p
c2
]

m [eV]
320 160 80 40 20

Leo II χ2

MARGINALIZING BETA 𝜷 - LEO II
Exclusion by data is not Parameter estimation

1𝜎 exclusion

due to 𝜷 ￫ 1
No upper limit on Rh 
No lower limit on m 

1𝜎

Excluded
by

D
ynam

ical Friction

-1.0 -0.5 0.0 0.5 1.0

1.6

1.8

2.0

2.2

2.4

2.6

Log10 Rh [kpc]

Lo
g 1
0
Σ 0

[M
⊙
/p
c2
]

-0.5

0

0.5

0.75

β = 1

m [eV]
320 160 80 40 20

Leo II χ2<12.6



Exclusion by data

due to 𝜷 ￫ 1
No upper limit on Rh 
No lower limit on m 

1𝜎 exclusion

MARGINALIZING BETA 𝜷 - WILLMAN I

1
2.3

6.18

6.18

11.83

Excluded
by

D
ynam

ical Friction

-2.0 -1.5 -1.0 -0.5 0.0 0.5
1.5

2.0

2.5

3.0

Log10 Rh [kpc]

Lo
g 1
0
Σ 0

[M
⊙
/p
c2
]

m [eV]

1600 800 400 200 100

Willman I χ2

Excluded
by

D
ynam

ical Friction

-2.0 -1.5 -1.0 -0.5 0.0 0.5
1.5

2.0

2.5

3.0

Log10 Rh [kpc]

Lo
g 1
0
Σ 0

[M
⊙
/p
c2
] β

=
-1

-0.5 0

0.5

1

m [eV]

1600 800 400 200 100

Willman I χ2<2.3



-1.0 -0.5 0.0 0.5 1.0

1.0

1.5

2.0

2.5

3.0

Log10 Rh [kpc]

Lo
g 1
0
Σ 0

[M
⊙
/p
c2
]

m [eV]
800 400 200 100 50

Willman I

Segue I

Leo II
dynamical friction

SO, BOUND ON DM MASS    

Tremaine Gunn 
saved by

Dynamical Friction  
 

…substantially 
weakened to
m ≳ 100 eV  

 
dSph

may be larger… 

(even if one does not 
want ≳ kpc size)  

m



-1.0 -0.5 0.0 0.5 1.0

1.0

1.5

2.0

2.5

3.0

Log10 Rh [kpc]

Lo
g 1
0
Σ 0

[M
⊙
/p
c2
]

m [eV]
800 400 200 100 50

Willman I

Segue I

Leo II
dynamical friction

SO, BOUND ON DM MASS    

Tremaine Gunn 
saved by

Dynamical Friction  
 

…substantially 
weakened to
m ≳ 100 eV  

 
dSph

may be larger… 

(even if one does not 
want ≳ kpc size)  

m

Nothing stronger from Dwarf Disk galaxies  [Little Things ’15 HI survey]
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RECENT WORKS

[Domcke+ JCAP ’15] 
m>200eV from LeoII (?)

[Randall+ MNRAS ’17] 
m>100eV from Fornax (?)
using multi-population

                        [Amorisco+ ’12]

but large cores 
not excluded !

?



E.G. SEARCHES FOR X-RAY LINES

in 𝝂MSM

[Boyarski at al  PRL ’14]



E.G. SEARCHES FOR X-RAY LINES

in 𝝂MSM

The Lyman-alpha bound  m > 1–7 keV … 
…can be evaded if  WDM is cold :)   e.g.
- generated via decay  

                                       [Patraki-Kusenko ’08]
- w/ dilution    

                                             [Bezrukov+ ’10]  
                         [Nemevsek, Senjanovic, Zhang ’12] 

- …

more space 
for sterile neutrinos
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E.G. SEARCHES FOR X-RAY LINES

in 𝝂MSM

(and btw how to search for them?)

The Lyman-alpha bound  m > 1–7 keV … 
…can be evaded if  WDM is cold :)   e.g.
- generated via decay  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That’s all from data. 

Then, a serious question is  
 

Are degenerate fermionic galaxies physical?



PHASE SPACE DISTRIBUTIONS
• For classical models 

(~maxwellian, intermediate  
    momenta dominate)

• To be compared with  
degenerate FD  
 
Lower momenta, Denser. 
 
 
Will the distribution collapse?  
How?

[Navarro Eke Frenk ’96]



• Encounters? No - play a role only for few objects  
(T = Tcrossing 0.1N/logN,  here N~10^70, very large)  
Thus, we are collisionless 

• Phase mixing? Relaxation for ignorance.  
Not relevant to get degeneration 
(phase space has to be fully filled)

• Violent relaxation?  
changes energy per unit mass (i.e. independent of mass)  
(collision independent - assumes motion in a changing potential) 

• In any case, would need interaction  
e.g. dissipation, to increase phase-space density (SIMD → fermi cores?)

RELAXATION IN GALACTIC 
DYNAMICS



SO, CONCLUSIONS
• Quantum degenerate fermionic DM may avoid cusps in dwarfs 

• Revisiting lower bound from existence of small galaxies:  
               Tremaine-Gunn + Dynamical Friction  
                                      m > 100eV  
              challenging Direct Search

• Missing satellite problem (helps SIDM?)  
                  hint to upper bound  m < few keV ?

• Smallest galaxies are the frontier - confrontation with data hard 
dispersion anisotropy the main nuisance. 

• Physics of fermionic galaxy formation the outstanding question  
 



SO, CONCLUSIONS
• Quantum degenerate fermionic DM may avoid cusps in dwarfs 

• Revisiting lower bound from existence of small galaxies:  
               Tremaine-Gunn + Dynamical Friction  
                                      m > 100eV  
              challenging Direct Search

• Missing satellite problem (helps SIDM?)  
                  hint to upper bound  m < few keV ?

• Smallest galaxies are the frontier - confrontation with data hard 
dispersion anisotropy the main nuisance. 

• Physics of fermionic galaxy formation the outstanding question  
 

Thanks!



OTHER DSPH

Using triaxial fits from [Hayashi et al +’16]
confirms the huge fit ranges 
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Table 1. Estimated lower bound on the fermionic DM massm from a number

of dwarf spheroidal galaxies, adopting the central densities as determined

in Hayashi et al. (2016).

DSph
Log ⇢0

[M�/pc3 ]

d0

[kpc]

lower bound

on m

Triangulum II
0.3

30
127 eV

Segue 1
�0.4

32
100 eV

Leo T
�0.6

417
26 eV

Reticulum II
�0.8

32
89 eV

Ursa Major I
�0.8

106
49 eV

Coma Berenices �0.8
44

76 eV

Sculptor
�0.8

86
54 eV

Fornax
�1.1

147
38 eV

Ursa Major II
�1.2

32
80 eV

Leo I
�1.3

254
27 eV

Canes Venatici II �1.4
151

34 eV

Hercules
�1.4

132
37 eV

Pisces II
�1.5

180
30 eV

Leo IV
�1.7

158
31 eV

Leo II
�1.7

233
25 eV

Draco II
�1.9

20
82 eV

Sextans
�2.

86
38 eV

Canes Venatici I �2.2
224

22 eV

Carina
�2.2

106
33 eV

Bootes I
�2.4

66
39 eV

Leo V
�2.6

178
22 eV

Draco
�2.7

76
33 eV

Hydra II
�3.1

134
22 eV

Segue 2
�3.2

35
43 eV

consider the possibility of triaxial halos and arbitrary density profile

slope at the center. While their analysis does not consider degenerate

fermionic halos, their results confirm that for most dwarf galaxies

the DM halo radius is quite poorly constrained, and halos of few

kpc size appear to be allowed by the data, even if this is most likely

unphysical. For our purposes, as discussed above, what drives the

bound on the DM mass is the interplay of the dynamical friction

constraint with the central halo density ⇢0, which is the quantity

constrained by observations in the limit of large halo size. Because

this central density is largely independent on the (outer) halo shape,

we can take advantage of the results of Hayashi et al. (2016) to

estimate the DM mass bound for all objects presented in that work.

The bound is in fact driven by the central DM density and the

distance of the dwarf satellite. As we see, by using the central

fitted values of the densities, our result of Segue I and Leo II are

confirmed, so that the results given in this work represent the most

conservative bound around m

& 100 eV, with a possibly slightly

stringent bound from the Triangulum II galaxy.

5 DISCUSSION AND CONCLUSIONS

In this work we have reassessed the lower bound on the mass of

a fermionic dark matter candidate, independently from particular

models of its production or history of its clustering. The quantum

nature of such light fermionic candidate implies an upper bound

on the phase space density in currently observed objects, and the

knowledge of the density can be turned into a lower bound on

the mass, à

l

a

Tremaine-Gunn. We have reconsidered the smallest

Dwarf Spheroidal galaxies, that according to kinematical data are

believed to host the largest densities of dark matter, thus constituting

the ideal candidates to set a lower bound on the DM mass m

.

Such a bound must be set in the hypothesis of DM halo com-

posed by a completely degenerate gas of fermions, whose density

profile is defined by the Lane-Emden equation. We have performed

a fit of the stellar velocity dispersion predicted by the gravitational

potential generated by such DM halo, versus the observed stellar

dispersion velocity and density profile of the Willman I, Segue I

and Leo II galaxies. In our analysis, di�erently from recent works

on the subject, we have not assumed that luminous matter traces the

DM distribution, thus we have considered the DM core radius and

surface density as free parameters. Moreover, we have taken into

account the e�ect of the unknown anisotropy of the stellar velocity

dispersion and marginalized over it.

As we have shown, the nuisance due to the stellar velocity

anisotropy � seriously hampers the possibility to constrain com-

pletely the DM halo parameters. In practice, one finds equally ac-

ceptable halos of very small sizes and negative � (where the total

DM halo mass is determined) or very large sizes ⇠ f

e

w

k

p

c

and

anisotropy near 1 (in which case the inner DM spatial density is

determined). This latter scenario e�ectively corresponds to low

phase-space densities, and thus no sensible lower bound on m

can

be given from stellar kinematical data alone. This situation is likely

to persist even in the future, until a way to measure the velocity

anisotropy in dwarfs spheroidals will be available (see e.g. Read &

Steger (2017)) although this appears currently quite unconceivable.

New approaches have been proposed to circunvent the �-

degeneracy in dSphs in which sub-populations can be sepa-

rated (Battaglia et al. 2008; Walker & Penarrubia 2011; Agnello &

Evans 2012). These methods were applied to Fornax dSph in Amor-

isco et al. (2013) to exclude the NFW profile and constrain the

DM distribution. The upper bound on Fornax core radius was used

by Randall et al. (2017) to infer a lower limit m

> 70 eV for the

mass of a fermionic dark matter particle. Unfortunately, the likeli-

hood distribution used to limit the core size in Amorisco et al. (2013)

does not converge to zero for large core radii (see their Fig. 4), as it

is expected due to the fact that the stellar populations have limited

extent. Therefore, while providing a robust lower bound for the core

radius, even this approach cannot exclude few-kpc core radii at high

confidence level.

Such multi-kpc halos are in any case unrealistic and a rationale

to rule them out is provided Gerhard & Spergel (1992) by the fact

that very large halos of known density correspond to large total halo

mass, which makes their time of orbital decay due to dynamical

friction in the Galactic DM halo, formula (15), too small. Therefore,

dynamical friction can be used to e�ectively limit the halo size and

the interplay with the quantum bound on phase-space density leads

finally to a lower bound on the fermionic DM mass m

.

As it turns out from the analysis that we described, at present

the most restrictive bound stems from the study of the Willman I and

Segue I galaxies. Our results are put together in Figure 1, where only

the interplay between the fit to stellar data and the constraint from

dynamical friction leads to a robust lower bound of m

& 100 eV.

Thus, one is led to reopen the case for sub-keV fermionic DM, like

sterile neutrinos of mass down to 100 eV.

For these two small dwarf galaxies driving the bound, the

resulting DM halo can reach sizes of ⇠ 1 kpc, much larger than their

MNRAS 000, 1–12 (0000)





PHASE  TRANSITION 
TO DEGENERATE?

[Bilić Viollier ’98]

possible, because gravity is attractive [Hertel Thirring ’71]



What about for fermions?  

• Fermions interact only with near-fermi-surface states, so even 
reduced encounters?  (and slow ones bounce off)

• Violent relaxation only possibility? (collisionless interaction) 
But are timescales of Potential variation sufficiently long? 
Still an open problem it seems                          [Chavanis ‘01-’03]

• BTW: violent relaxation leads to Fermi Dirac - like distribution, 
even for bosons…                                          [Lynden-Bell ’67] 
(thus, we may say it’s compatible)                

RELAXATION IN GALACTIC 
DYNAMICS



Favourable (free)energy budget necessary for phase transition, not sufficient.

Self-gravitating systems like DM halos are intrinsically non equilibrium… 

So what matter are the timescales... Relaxation, thermalization, evaporation. ?

• Fermionic jeans instability has lower k bound, degeneracy historically relevant

• Ideal violent relaxation leads to core plus 1/r^2   [Lynden Bell ’67] 
but incomplete violent relaxation can lead to large distance cutoff 
as also evaporation

• Simulations of classical violent relaxation lead to core plus 1/r^4  
                                                                                [Henon ’64;van Albada+ ’82; Roy+ ’04; Joyce+’09] 
due to thermalization + evaporation after core formation (but it appears to be slow?). 

SO IS IT ACTUALLY REALIZED?

[Chavanis+ 1409xxxx]
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SO IS IT ACTUALLY REALIZED?

Looking forward to quantum simulations? 

[Chavanis+ 1409xxxx]


