

Sharpening the "Fuzzy" Dark Matter

Luca Visinelli Stockholm University & NORDITA

Luca Visinelli, 2017-08-04

CDM Framework

- Gas cooling and star formation within DM halos is the standard paradigm for the origin of galaxies White&Rees (1978)
- Numerical simulations of DM halos highlight a universal profile (NFW pivotal paper), with a "cuspy" halo

Luca Visinelli, 2017-08-04

CDM Framework

- Gas cooling and star formation within DM halos is the standard paradigm for the origin of galaxies White&Rees (1978)
- Numerical simulations of DM halos highlight a universal profile (NFW pivotal paper), with a "cuspy" halo
- Over-prediction of DM core density

Dubinski&Carlberg (1991); Moore et al. (1998)

• O(10) overabundance of small satellites compare to MW

Moore et al. (1999); Klypin et al. (1999)

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

CDM Framework

- Gas cooling and star formation within DM halos is the standard paradigm for the origin of galaxies White&Rees (1978)
- Numerical simulations of DM halos highlight a universal profile (NFW pivotal paper), with a "cuspy" halo
- Over-prediction of DM core density

Dubinski&Carlberg (1991); Moore et al. (1998)

• O(10) overabundance of small satellites compare to MW

Moore et al. (1999); Klypin et al. (1999)

Alleviated by cutoff of $P_{\rm CDM}(k)$ at $k \sim 4.5 \, h \, {\rm Mpc}^{-1}$

Kamionkowski&Liddle (1999)

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Possible explanation: FDM

• deBroglie wavelength $\lambda_{dB} \sim \frac{1}{mv} \sim \frac{1}{mr} (G\rho)^{-1/2}$

• For an object of size $r \sim \lambda_{\rm dB} \sim r_J \sim (G\rho)^{-1/4} m^{-1/2}$

$$\lambda_{\rm dB} = 0.3 \,\rm kpc \left(\frac{m}{10^{-22} \,\rm eV}\right)^{-1} \qquad M_{\rm DwG} = 10^{10} \,M_{\odot}$$
$$r = 10 \,\rm kpc$$

Baldeschi Gelmini Ruffini, PLB **122** 221 (1983)

Hu, Barkana, Gruzinov, PRL 85 (2000)

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Possible explanation: FDM

Power spectrum $P_{\text{FDM}}(k) = T_{\text{FDM}}^2(k)P_{\text{CDM}}(k)$

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Possible explanation: FDM

FDM is indistinguishable from CDM on large scales....

... galactic-size self-gravitating soliton cores are produced

Schive et al. Nature **10** 496 (2014)

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Axion physics primer

Motivations

QCD is CP-conserved by PQ symmetry

• Effective axion-photon coupling

• $g_{a\gamma\gamma} \propto m_a$

• $m_a f_a \propto \Lambda_{\rm QCD}^2$

Axion cosmology

Axions are non-thermal relics

Non-relativistic, so **CDM candidates**

Axion mass $\sim 10 \mu eV$ (but see later....)

Solar & Stellar axions

"Primakoff" effect, look for axions emitted

CAST, Barth *et al*, JCAP **1305** 010 (2013) IAXO, Armengaud *et al*, arXiv:1401.3233

Self-Interacting Dark Matter

Cavity and other lab searches

* Axion-photon convert in strong **B** field Sikivie, PRL **5** I 1415 (1983), best for $m_a \lesssim 10 \,\mu \text{eV}$ ADMX, Asztalos et al, PRL IO4 041301 (2010) ADMXHF, Brubaker et al, PRL II8 061302(2017) CULTASK, Chung, PoS CORFU2015 **047** (2016)

* CASPER NMR: Budker, PRX 4 021030 (2014)

* MadMAX Haloscope, PRL **118**, 091801(2017)

Luca Visinelli, 2017-08-04

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Axion physics primer

Motivations

QCD is CP-conserved by PQ symmetry

• Effective axion-photon coupling

• $g_{a\gamma\gamma} \propto m_a$

• $m_a f_a \propto \Lambda_{\rm QCD}^2$

Axion cosmology

Axions are non-thermal relics

Non-relativistic, so **CDM candidates**

Axion mass $\sim 10 \mu eV$ (but see later....)

Solar & Stellar axions

"Primakoff" effect, look for axions emitted

CAST, Barth *et al*, JCAP **1305** 010 (2013) IAXO, Armengaud *et al*, arXiv:1401.3233

Self-Interacting Dark Matter

Cavity and other lab searches

* Axion-photon convert in strong **B** field Sikivie, PRL **5** I 1415 (1983), best for $m_a \lesssim 10 \,\mu \text{eV}$ ADMX, Asztalos et al, PRL IO4 041301 (2010) ADMXHF, Brubaker et al, PRL II8 061302(2017) CULTASK, Chung, PoS CORFU2015 **047** (2016)

* CASPER NMR: Budker, PRX 4 021030 (2014)

* MadMAX Haloscope, PRL **118**, 091801(2017)

Luca Visinelli, 2017-08-04

Axion coherent oscillations

Non-thermal production of ULAs: 1) Misalignment 2) Strings?

$\ddot{\phi} + 3H\dot{\phi} + m^2\sin\phi = 0$ $m \approx 3H$

Courtesy of J. Redondo

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Scenario A: PQ breaks after inflation

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Scenario A: PQ breaks after inflation

Axion strings!

CDM axions also from defects...

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Scenario B: PQ breaks during inflation

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Self-Interacting Dark Matter

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Self-Interacting Dark Matter

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Conclusions

- FDM models address the missing satellite problem;
- Axion-like particles are suitable FDM candidates, thanks to the non-thermal production;
- A measurement of primordial gravitational waves in the near future might severely cripple Axion FDM.

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

FDM Candidate: the Axion

Courtesy of DJE Marsh

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04

Galaxy power spectrum

Self-Interacting Dark Matter

Luca Visinelli, 2017-08-04