Summary talk for SIDM

Céline Boehm

IPPP, Durham

Copenhagen, August 2017

Some challenges to ΛCDM

- 1. Anomalies in the cosmic microwave background
- 2. The under-abundance of dwarf galaxies (aka "missing satellites")
- The unexpected dark matter distribution around dwarf galaxies (aka "cusp/core")
- 4. The low masses of dwarf galaxies (aka "too big to fail")
- 5. Unexpected alignments in the distribution of dwarf galaxies
- 6. The existence of a common acceleration scale

See also Kuzio de Naray, Martinez, Bullock, Kaplinghat (2009)

Courtesy Hai-Bo Yu

A Big Challenge for ACDM

What about ~ baryonic DM?

cross section needs to be ~ 0.1-10 cm^2/g

Courtesy Bryan Zaldivar

large (~20b) xsection
 due to large scattering length

 $\lim_{k \to 0} \sigma = 4\pi a^2$

- a diverges for $E_b \rightarrow 0$ bound state

DM not a baryon because

- * charged
- * signatures of interactions in P(k)

The Silk damping

References

- 1. Lifshitz, E., J. Phys. (USSR), 10, 116 (1946).
- 2. Bonnor, W. B., Mon. Not. Roy. Astron. Soc., 117, 104 (1957). 1 [S] 1
- 3. Layzer, D., Ann. Rev. Astron. and Astrophys., 2, 341 (1964). | SI I
- 4. Peebles, P. J. E., Astrophys. J., 142, 1317 (1965). | Article | ISI |
- 5. Hawking, S. W., Astrophys. J., 145, 544 (1966). | Article | ISI |
- 6. Sachs, R. K., and Wolfe, A. M., Astrophys. J., 147, 73 (1967). | Article | ISI |
- 7. Peebles, P. J. E., Astrophys. J., 147, 859 (1967). | Article | ISI |
- 8. Gamow, G., in Vistas in Astronomy (edit. by Beer, A.), 2, 1726 (1956).
- 9. Dicke, R. H., Peebles, P. J. E., Roll, P. G., and Wilkinson, D. T., Astrophys. J., 142, 414 (1965). I Article I ISI I
- 10. Misner, C. W., Nature, 214, 40 (1967). I ISI I

The damping mechanisms in the case of baryons

-0.5

Let us start with the free-streaming as it is the most well-known effect

Free-streaming when DM has (even small) collisions

(astro-ph/0012504, astro-ph/0410591)

Very different expressions

$$\int_{t_{dec}}^{t_{nr}} \frac{c}{a(t)} dt + \int_{t_{nr}}^{t_0} \frac{v(t)}{a(t)} dt \quad \text{if} \quad t_{dec} < t_{nr}$$

$$\int_{t_{dec}}^{t_0} \frac{v(t)}{a(t)} dt \text{ if } t_{dec} > t_{nr}$$

Céline Boehm

ngano et al. 2006; Serra et al. ere are three reasons for this: ve the largest energy density hey are relativistic and theres out of small mass^teveretensiof DM must have been mucht at early times to texplain the ould be about T_{dec}]

e a signiti-

HDM

scattering cross-section, the ominent Rthe ore expect t struct CMB s 2013) $1d 2 \times 1_{\omega_{e}}$ ss-secti 🐔 8% CL l. 2014; 🖫 e cons[.] have (eir diffe to the ering^1 .

this paper for the γ CDM and ν CDM cross-sections and FFE CVSITE AMENGVen in Table 1. These parameter ve the largest energy density are motivated by the constraints obtained in our previou atter-radiation equality) of any work (Boehm et al. 2014) and have been selected such the the primary scale at which the transfer function is sup pressed by a factor of two with festpect to CDM is identical No interaction, tdec = "0" time: This scale is known as the *half-mode* mass, M_{hm} , and define the transition between Regions Land II in Fig. 1. In Region II, there are important differences between important di ferences start 473 ppear, thus leading to differen hip $ar_{lar_{struct}} \sim 100$ to lar_{struct} Bode and Ostriker (for γCDM . In the case of a thermalized, non-interacting fermion DM particle, the suppression in the matter power spe m can be approximated by the transfer function (Boc al. 2001)

$$T(k) = \begin{bmatrix} 1 \\ 1 \\ + \\ (\alpha k)^{2\mu} \end{bmatrix}^{(\alpha k)} \begin{bmatrix} 1 \\ 2^{\mu} \end{bmatrix}^{-5/\mu} , \qquad (1)$$

re, $\Omega_{\rm DM}$ is the DM energy density, h is the reduced Hul parameter and $\mu \simeq 1.2$ is a fitting parameter². The sca

Céline Boehm

0.05

0.1

-1.5

3.0

 \log_{10} k / h Mpc ¹

k / h Ype

0.3

-1

-0.5

for νCDM suffers from significant degeneracies (see Wilkinson)

Generalising the free-streaming

Free-streaming for generalised DM models

(astro-ph/0012504, astro-ph/0410591)

3 characteristic times/scale-factors ====>> 6 DM configurations

sterile neutrino - self-interactions •	Region I Region II Region III	$a_{dec(dm)} < a_{nr} < a_{eq(\gamma+\nu)}$ $a_{nr} < a_{dec(dm)} < a_{eq(\gamma+\nu)}$ $a_{nr} < a_{eq(\gamma+\nu)} < a_{dec(dm)}$	- WIMPs-like
neutrinos 🚽	 Region IV Region V Region VI 	$\begin{aligned} a_{dec(dm)} &< a_{eq(\gamma+\nu)} < a_{nr} \\ a_{eq(\gamma+\nu)} &< a_{dec(dm)} < a_{nr} \\ a_{eq(\gamma+\nu)} &< a_{nr} < a_{dec(dm)} \end{aligned}$	

DM physics without having a DM model

(astro-ph/0012504, astro-ph/0410591)

Classification

(astro-ph/0012504, astro-ph/0410591)

Classification

(astro-ph/0012504, astro-ph/0410591)

Classification

(astro-ph/0012504, astro-ph/0410591)

Free-streaming when DM has (even small) collisions

(astro-ph/0012504, astro-ph/0410591)

Can we have light Interacting DM? OLD VERSION

How do you explain the relic abundance?

$$\sigma v \propto v^2 \ \frac{m_{\rm DM}^2}{m_{Z'}^4} \ g_{\rm DM}^2 \ g_e^2$$

 $m_{\rm DM} \simeq m_{Z'}$ dark photons/dark Z'

light DM is ok if light mediator

Neutrino experiments (CHARM II) also provide strong constraints! And do expect even better limits now with the coherent interactions

Light thermal DM is hard to achieve given current constraints

but both the Z' and light DM had a life on their own

Coulomb interactions have a huge cross section so there is room for small couplings

Going long-range interactions

Courtesy Bryan Zaldivar

Yukawa model

[Tulin, Yu & Zurek, 1302.3898]

But beware of signatures ...

Courtesy Bryan Zaldivar

[Bringmann, Kahlhoefer, Schmidt-Hoberg & Walia, 1612.00845]

Assumptions: 1) s-wave DM annihilation

- 2) kinetic-mixing w/ photons
- 3) dark sector thermalised with SM at some point before freeze-out

Can we have light **SELF & STRONGLY** Interacting DM?

New ways to explain the relic abundance

Freeze-in mechanism but there are more... Including 3 ->2 processes

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v^2 \rangle_{3 \to 2} \left(n^3 - n^2 n_{\rm eq} \right)$$

Canibal DM revived by Hochberg, Kuflik, Volansky & Wacker '14

SELF & STRONGLY Interacting DM & relic abundance Courtesy Camilo Garcia Cely

Figure: Parameter space for self-Interactions

3->2 is quite constrained!

Can we have light **SELF & STRONGLY** Interacting DM?

DM self-interactions via a scalar mediator

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)^{\mathrm{PP}} = |f(\theta) \pm f(\pi - \theta)|^2$$
$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)^{\mathrm{PA}} = |f(\theta)|^2$$

$$\begin{split} \sigma_{\widetilde{\mathbf{T}}}^{\mathrm{PP,PA}} &\equiv \int \mathrm{d}\Omega \left(1 - |\cos\theta|\right) \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)^{\mathrm{PP,PA}} \\ \sigma_{\widetilde{\mathbf{T}}} &= \frac{1}{2} \left(\sigma_{\widetilde{\mathbf{T}}}^{\mathrm{PP}} + \sigma_{\widetilde{\mathbf{T}}}^{\mathrm{PA}}\right) \end{split}$$

• automatically leads to the desired velocity-dependence of $\sigma_{\widetilde{T}}$!

or pseudo scalar mediator

(Maria's favourite?)

Courtesy Sebastian Wild

Direct Detection if interactions with SM

Status of SIDM via a light mediator

Singlet Scalar DM $4 \rightarrow 2$ annihilations

Courtesy Nicolas Bernal

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v^3 \rangle_{4 \to 2} \left(n^4 - n^2 n_{\rm eq}^2 \right)$$

- Self-interacting DM with no light mediators → SIMP DM
- Z₂ SIMP DM generated via 4 → 2 annihilations
- DM: MeV ballpark, 'large' self-interactions & 'small' portal with the SM
- Difference of temperatures dynamically produced via freeze-in!
- Self-interactions: small velocity dependence

T_{SM} = T_{DM} & T_{SM} ≠ T_{DM} @ DM freeze-out

Heavy spin-2 DM

$$g_{\mu\nu} = \overline{g}_{\mu\nu} + \frac{\delta G_{\mu\nu}}{\mathsf{m}_{\mathsf{Pl}}} + \mathcal{O}(\alpha^{1}), \quad f_{\mu\nu} = \overline{g}_{\mu\nu} + \frac{1}{\alpha} \frac{\delta M_{\mu\nu}}{\mathsf{m}_{\mathsf{Pl}}} + \mathcal{O}(\alpha^{1})$$

Loosely speaking, the self-interactions of δM are the same as those of δG but enhanced by powers of $1/\alpha$.

Figure: Bimetric theories naturally give rise to self-interacting spin-2 DM

Conclusions

- In bimetric theories, requiring negligible interactions between the second metric and ordinary particles naturally leads to spin-2 SIDM capable of addressing the small-scale problems.
- SIDM without light mediators can be produced via 3-to-2 annihilations. The corresponding increase of temperature is not problematic if the two sectors have a large temperature ratio before freeze-out.

Courtesy Camilo Garcia Cely

What kind of cross section? Velocity dependence

Courtesy Bryan Zaldivar

What kind of cross section?

Courtesy Mauro Valli

MW dSph	$\langle \sigma v \rangle ~[\mathrm{cm^3~g^{-1}~s^{-1}}]$	$\langle v \rangle \; [{\rm km \; s^{-1}}]$	$\sigma/m ~[{\rm cm^2~g^{-1}}]$
Ursa Minor	$1.2^{+2.2}_{-0.7} \times 10^2$	52^{+11}_{-7}	$2.9^{+2.7}_{-1.8}$
Sculptor	$0.53^{+0.22}_{-0.22} imes 10^2$	$39.5^{+3.0}_{-3.5}$	$1.23^{+0.62}_{-0.37}$
Draco	$0.65^{+0.54}_{-0.28} imes 10^2$	$45.7^{+3.7}_{-5.5}$	$1.60\substack{+0.93\\-0.64}$
Sextans	$0.6^{+4.0}_{-0.3} imes 10^2$	51^{+16}_{-7}	$0.3^{+8.1}_{-0.2}$
Carina	$1.3^{+1.2}_{-0.6} \times 10^2$	$46.9^{+5.6}_{-4.8}$	$2.7^{+2.3}_{-1.1}$
Fornax	$0.28^{+0.16}_{-0.09} \times 10^2$	$30.9^{+2.5}_{-1.3}$	$0.93\substack{+0.66\\-0.38}$
Leo II	$2.1^{+2.0}_{-1.3} \times 10^2$	53^{+13}_{-3}	$3.7^{+2.9}_{-1.7}$
Leo I	$1.04^{+0.76}_{-0.43} \times 10^2$	$45.7^{+3.4}_{-4.6}$	$2.4^{+1.5}_{-0.9}$

Our study on SIDM halo in MW dSphs shows:

 X-sec range in agreement with current indications from N-body simulations. Zavala, J. et al. '13, Elbert, O. et al. '15

II) Same SIDM ballpark to address "Core VS Cusp" in other kpc-sized systems. Kaplinghat, M. et al. '16, Kamada, A. et al. '17

III) Some tension left btw goodness of the fit of kinematic data & outer match to CDM.

-> SIDM ameliorates TBTF problem! Vogelsberger, M. et al. '16 (ETHOS)

MI.V. & H.B. Yu (in prep.)

$$\begin{split} &1\,\mathrm{cm}^2\mathrm{g}^{-1} \lesssim \sigma/m \lesssim 3\,\mathrm{cm}^2\mathrm{g}^{-1} \\ &30\,\mathrm{km}\,\mathrm{s}^{-1} \lesssim \langle v \rangle \lesssim 70\,\mathrm{km}\,\mathrm{s}^{-1} \end{split}$$

What kind of cross section?

Courtesy Mauro Valli

Strongly Interacting Massive Particles

PRL 113 (2014) 171301, Hochberg,Y. et al. PRL 115 (2015) 021301, Hochberg,Y. et al.

Self-Interactions with Light Mediators

PRD 81 (2010) 083522, M.R.Buckley & P.J.Fox PRL 106 (2011) 171303, A.Loeb & N.Weiner PRL 110 (2013) 111301, S.Tulin, K.Zurek & H.B.Yu @ strong coupling, strong scale emerges:

$$m_{DM} \sim \alpha_{eff} (T_{eq}^2 M_{Pl})^{1/3}$$

"Simple" realizations involve non-Abelian dark sector with QCD-like chiral symmetry breaking

Dominant 3, 4 —> 2 annihilations, dark sector cannot be completely secluded from SM

ApJ 398 (1992) 43 , E.D. Carlson, M. E. Machacek & L.J.Hall

In the perturbative regime, large self-scattering point to MeV mediators for weak-scale DM:

$$g^4 \frac{m_{\chi}^2}{m_{\phi}^4} \sim 10^{14} \frac{\alpha_{EW}^2}{m_{\chi}^2} \Rightarrow \frac{m_{\phi}}{m_{\chi}} \sim \left(\frac{g}{0.1}\right)^4 10^{-4}$$

E.g.: $U(1)_D$ coupled to SM through $U(1)_Y$ small mixing

PRD 89 (2014) 035009 , M.Kaplinghat et al. PRL 118 (2017) 141802 , T.Bringmann et al. arXiv:1707.02149 , F.Kahlhoefer et al.

LIGHT MEDIATOR MODELS ALLOW FOR DM V-DEPENDENT SELF-SCATTERING X-SEC!

Probing SIDM with cosmology

But (strongly) self-interacting DM has interactions

(astro-ph/0012504, astro-ph/0410591)

Céline Boehm

Collisional damping for self-interacting DM

$$l_{id}^{2} \sim \frac{2 \pi^{2}}{3} \int_{0}^{t_{\text{dec(dm-i)}}} \frac{\rho_{\text{i}} v_{i}^{2}}{\rho_{t} a^{2} \Gamma_{\text{i}}} dt \qquad l_{fs} = \int_{t_{dec}}^{t_{0}} \frac{v}{a(t)} \times dt$$

$$l_{sd}^2 \sim \frac{2\pi^2}{3} \frac{\rho_{dm} v_{dm}^2 t}{\not \! \! / a^2 \Gamma_{dm}} \left(1 + \Theta_{dm}\right) |_{dec(dm)}$$

$$l_{sd} \sim \pi r_{dm} \left(\frac{H}{\Gamma_{dm}}\right)^{\frac{1}{2}} \frac{v_{dm}t}{a}|_{dec(dm)}$$

Classification

(astro-ph/0012504, astro-ph/0410591)

The physics of DM interactions on primordial fluctuations

astro-ph/0112522

efficient if DM is coupled to a species that is also interacting with other fluids

without DM interactions

$$\begin{split} \dot{\theta}_{\rm b} &= k^2 \psi - \mathcal{H} \theta_{\rm b} + c_s^2 k^2 \delta_{\rm b} - R^{-1} \dot{\kappa} (\theta_{\rm b} - \theta_{\gamma}) \\ \dot{\theta}_{\gamma} &= k^2 \psi + k^2 \left(\frac{1}{4} \delta_{\gamma} - \sigma_{\gamma} \right) - \dot{\kappa} (\theta_{\gamma} - \theta_{\rm b}) \;, \\ \dot{\theta}_{\rm DM} &= k^2 \psi - \mathcal{H} \theta_{\rm DM} \;, \end{split}$$

with DM interactions

$$\begin{split} \dot{\theta}_{b} &= k^{2} \psi - \mathcal{H} \theta_{b} + c_{s}^{2} k^{2} \delta_{b} - R^{-1} \dot{\kappa} (\theta_{b} - \theta_{\gamma}) \\ \dot{\theta}_{\gamma} &= k^{2} \psi + k^{2} \left(\frac{1}{4} \delta_{\gamma} - \sigma_{\gamma} \right) \\ &- \dot{\kappa} (\theta_{\gamma} - \theta_{b}) - \dot{\mu} (\theta_{\gamma} - \theta_{DM}) , \\ \dot{\theta}_{DM} &= k^{2} \psi - \mathcal{H} \theta_{DM} - S^{-1} \dot{\mu} (\theta_{DM} - \theta_{\gamma}) . \end{split}$$

DM-photon interactions

u = ratio of cross section to the DM mass (1 parameter!)

dark matter cannot be a baryon...but CMB does not prevent a coupling to photons

DM-neutrino interactions

astro-ph/0606190, arXiv:0911.4411,arXiv:astro-ph/0406355, arXiv:1310.2376, arXiv:astro-ph/0202496 [astro-ph], arXiv:1311.2937 [astro-ph.CO], arXiv:1207.3124 [astro-ph.CO], arXiv:1209.5752 [astro-ph.CO], arXiv:1212.6007

Only primordial interactions but if SIDM then primordial+late-time effects arXiv:1205.5809

The physics of DM interactions on primordial fluctuations

astro-ph/0112522

efficient if DM is coupled to a species that is also interacting with other fluids

without DM interactions

$$\begin{split} \dot{\theta}_{\rm b} &= k^2 \psi - \mathcal{H} \theta_{\rm b} + c_s^2 k^2 \delta_{\rm b} - R^{-1} \dot{\kappa} (\theta_{\rm b} - \theta_{\gamma}) \\ \dot{\theta}_{\gamma} &= k^2 \psi + k^2 \left(\frac{1}{4} \delta_{\gamma} - \sigma_{\gamma} \right) - \dot{\kappa} (\theta_{\gamma} - \theta_{\rm b}) \;, \\ \dot{\theta}_{\rm DM} &= k^2 \psi - \mathcal{H} \theta_{\rm DM} \;, \end{split}$$

with DM interactions

$$\begin{split} \dot{\theta}_{b} &= k^{2} \psi - \mathcal{H} \theta_{b} + c_{s}^{2} k^{2} \delta_{b} - R^{-1} \dot{\kappa} (\theta_{b} - \theta_{\gamma}) \\ \dot{\theta}_{\gamma} &= k^{2} \psi + k^{2} \left(\frac{1}{4} \delta_{\gamma} - \sigma_{\gamma} \right) \\ &- \dot{\kappa} (\theta_{\gamma} - \theta_{b}) - \dot{\mu} (\theta_{\gamma} - \theta_{DM}) , \\ \dot{\theta}_{DM} &= k^{2} \psi - \mathcal{H} \theta_{DM} - S^{-1} \dot{\mu} (\theta_{DM} - \theta_{\gamma}) . \end{split}$$

The physics of DM interactions on primordial fluctuations

 $T_{\rm WDM} = [1 + (\alpha k)^{2\nu}]^{-5/\nu}$

 $lpha = 0.073 \, {
m Mpc} \left(u/10^{-6}
ight)^{0.48}$ astro-ph/0112522 (Steen Hansen)

P(k) for Dark Matter-neutrino interactions

Interacting DM can behave as Warm DM

astro-ph/0112522

Courtesy Maria Archidiacono

Kinetic decoupling: bounds from Ly- α

Talk by T. Binder

$$\Gamma_{DM} = H \rightarrow T_{kd}(m_{\chi}, m_{\phi}, g_{\chi}, g_{\nu}, \xi)$$

The mass of the smallest proto-halos corresponds to the mass enclosed in the Hubble horizon at the time of kinetic decoupling.

DM-Dark radiation interactions

DM-Dark radiation interactions Courtesy Maria Archidiacono

impact on CMB

The clustering of cold dark matter before baryon drag is described by the Meszaros

equation: $\ddot{\delta}_{c}^{slow} + \frac{\dot{a}}{a}\dot{\delta}_{c}^{slow} = 4\pi G a^{2}\rho_{c}\delta_{c}^{slow}$ CDM is self-gravitating

For photons: $(1+R)\ddot{\delta}_{\gamma}^{fast} + \frac{\dot{a}}{a}\dot{\delta}_{\gamma}^{fast} + \frac{1}{3}k^2R\delta_{\gamma}^{fast} = 0 \Rightarrow CMB \text{ primary anisotropies}$

$$\dot{\delta}_{DM} + \theta_{DM} - 3\dot{\phi} = 0$$
$$\dot{\theta}_{DM} - k^2 c_D^2 \delta_{DM} + H \theta_{DM} - k^2 \psi = 0$$

DM self-interactions

Self-interacting DM interactions

versus the 1000s by Spergel&Steinhardt

Self-interacting dark matter [135 cit

(135 citations...)

Eric D. Carlson (Harvard U.), Marie E. Machacek (Northeastern U.), Lawrence J. Hall (UC, Berkeley & LBL, Berkeley)

Mar 1992 - 31 pages

Astrophys.J. 398 (1992) 43-52

DM self-collisions in N-body simulations (probabilistic approach)

The coarse-grained distribution is given by a discrete representation of N particles:

$$\hat{f}(\mathbf{x}, \mathbf{v}, t) = \sum_{i} (M_i/m) W(|\mathbf{x} - \mathbf{x}_i|; h_i) \delta^3(\mathbf{v} - \mathbf{v}_i)$$

Algorithm: Gravity + Probabilistic method for elastic scattering

Consider a neighbourhood around each particle:

in pairs:

total for a particle:

$$P_{ij} = \frac{m_i}{m_{\chi}} W(r_{ij}, h_i) \,\sigma_T(v_{ij}) v_{ij} \,\Delta t_i$$

$$P_i = \sum_j P_{ij}/2$$

discrete version of the collisional operator

A collision happens if: $x \leqslant P_i$, where x is a random number between 0 and 1

sort neighbours by distance and pick the one with:

Isotropic Elastic collision:

 $\vec{v}_i = \vec{v}_{cm} + (\vec{v}_{ij}/2) \hat{e}$ $\vec{v}_j = \vec{v}_{cm} - (\vec{v}_{ij}/2) \hat{e}$ randomly scattered

 $x \leq \sum_{i}^{l} P_{ij}$

Kochanek & White 2000, Yoshida+2000,...Vogelsberger, Zavala, Loeb 2012, Rocha+2013

Courtesy Jesus Zavala

If gravity is the only relevant DM interaction, the central density of haloes is ever increasing

With strong self-interactions $(\sigma/m \gtrsim 0.5 cm^2/gr)$ DM haloes develop nearly spherical "isothermal" cores

M. Vogelsberger's talk

Francis-Yan Cyr-Racine

ALMA might not distinguish SIDM from SCDM

SIDM substructure lensing signature is not Gaussian

a & Loeb 2012

WDM

γCDM'

C.B., J. Schewtschenko et al

arXiv 1404.7012

γCDM

100 kpc

 $\sigma_{{
m DM}-\gamma}\lesssim 10^{-33}$ (

Quick understanding

$$l_{id}^2 \sim \frac{2 \pi^2}{3} \int_0^{t_{\text{dec(dm-i)}}} \frac{\rho_{\text{i}} v_i^2}{\rho_t \ a^2 \ \Gamma_{\text{i}}} dt$$

DM self-interactions

$$l_{sd}^2 \sim \frac{2\pi^2}{3} \frac{\rho_{dm} v_{dm}^2 t}{\not \! \! \rho a^2 \Gamma_{dm}} \left(1 + \Theta_{dm}\right)|_{dec(dm)}$$

DM interactions with radiation

$$l_{id}^2 \sim \frac{2\pi^2}{3} \frac{\rho_i v_i^2 t}{\not \! \! / a^2 \Gamma_i} \left(1 + \Theta_i\right)|_{dec(dm-i)}$$

v_i is higher, rho_i is higher

"induced damping" stronger ... as a result smaller cross section makes the same effect as SIDM

BUT SIDM has both a primordial and late-time effect! (which others don't have...perhaps)

Differences with CDM

http://arxiv.org/pdf/1412.4905.pdf

Differerent from CDM but quite similar to WDM

Céline Boehm

Courtesy Maria Archidiacono

	Missing satellites	Cusp vs. core	Too big to fail
Baryons	1	1	✓
SIDM	×	✓	✓
SIDM + DR	1	1	✓
WDM	1	×	1
DDM	✓	×	✓
LFDM	✓	×	✓
BSI	1	1	×

Broken-Scale-Invariance inflationary model

The model predicts an excess of power wrt to Λ CDM before the cutoff; thus it is highly constrained by Ly- α .

Kamionkowski et al., PRL (2000)

A few important points

Courtesy Hai-Bo Yu

SIDM with Strong Feedback

The SIDM distribution is sensitive to the baryon distribution

Mass function

the signatures at high redshift

astro-ph/0309652

Courtesy J.A. Schewtschenko

Courtesy Laura Lopez-Honorez

WDM imprint on Reionization

similar to [Sitwell'14, Bose'16] and for different approach [Yue'12,Barkana'01, Somerville'03,Yoshida'03, Schultz'14, Dayal '14+, Rudakovskyi'16]

• Ionization level at $z \sim z_{reio}$:

$$\bar{x}_i \approx \zeta_{UV} f_{\text{coll}} \text{ with } f_{\text{coll}} = f_{\text{coll}}(>M_{\text{vir}}^{\min}) = \int_{M_{\text{vir}}^{\min}} \frac{M}{\rho_{m,0}} \frac{dn}{dM} dM$$

Optical depth to reionization:

 $\tau = \sigma_T \int \bar{x}_i n_b \, dl$ and Planck: $\tau = 0.055 \pm 0.009$ [Aghanim'16]

Probing SIDM with cosmology

Vogelsberger+ 12'

Courtesy David Harvey

Courtesy Thejs Brinckmann

- Three-pronged attack
- Halo shapes
- Density profiles
- Velocity anisotropy profiles

"High mass" cluster-sized haloes

- SIDM0.1: Hard target to reach g o.6
- SIDM1: Clear difference at all radii to 0.3 R₂₀₀ ~ 450 kpc/h!
- Promising, data is available (X-ray, gravitational lensing)
- Challenge: projection effects
- · Constraints: work in progress

SIDM creates cored profiles (e.g. Rocha et al. 1208.3025)

- SIDM0.1 at resolution level
- SIDM1 difference up to 0.04 R₂₀₀ ~ 60 kpc/h
- Baryons are important here!
- We need ~ 0.05 0.1 $R_{\rm 200}$

velocity dispersion can constrain SIDM1 (work in progress)

Offsets in individual galaxies Courtesy Richard Massey

Shu et al. (2016), ApJ 820, 43

Abell 3827

Williams & Saha (2011), MNRAS 415, 0448 Massey et al. (2015), MNRAS 449, 3393 Taylor et al. (2017), MNRAS 468, 5004

NO WOBBLING OBSERVED IN STANDARD MODEL DARK MATTER

DARK MATTER — GALAXY OFFSETS FROM 72 MERGING SYSTEMS

Harvey+ 2015

OBSERVATIONS FAVOUR NON-ZERO WOBBLE AT 3-SIGMA SIGNIFICANCE

bimodality: new constraints 0.47cm^2/g

SYSTEMATICS IN MEASURING AND INTERPRETING OFFSETS

New ways to parameterise skewness

₩ шәнรג໌ς Kahlhoefer et al. (2014), MNRAS 437, 2865

Taylor et al. (2017), MNRAS 468, 5004

Update in 2017

N

ALMA mm integral field spectroscopy (contours; background image HST)

Courtesy Richard Massey

A3827 mass distribution - 2017 Courtesy Richard Massey

No offset!!!

Offsets/wobbles in massive galaxies of Hubble Frontier Field clusters

Courtesy Liliya Williams

We measure mass-light offsets between central galaxies in clusters and the nearest mass peak, ~0-15 kpc, and estimate statistical significance

Mass-light offsets could be due to **SIDM** or purely **Newtonian gravity**

Simulations give no offset for many of the clusters

None of the 5 galaxy-mass offsets is larger than ~15 kpc.

allow model free conclusions

Offseting the centers of the stellar and dark matter distribution by <1kpc can reproduce observations.

Courtesy Andrew Robertson

WHY VELOCITY DEPENDENCE REDUCES OFFSETS

The motion of particles within their halos has a component transverse to the collision axis, which increases the average pairwise velocity of particles above the collision velocity of the two haloes

Particles moving 'backwards' with respect to their halo's direction of motion have a lower relative velocity with respect to the other halo – more likely to scatter

Constraints on SIDM cross-sections from offsets in merging clusters may be over-stated

 For the simplest well-motivated velocity-dependent SIDM, expect only small offsets in merging galaxy clusters

Toward Better Merger Modeling

Courtesy David Wittman

merger phase matters: components change relative position over time

Radio selection gives more clusters

We can get big offset with cdm (can't tell by more than 95%)

Ng+, 1703.00010

in line with the other conclusions??

BOUNDARIES OF DARK MATTER HALOS

Courtesy Surhud More

SM et al. 2015

Edge of MW could touch Andromeda.

How do you define the edge of the halo?

XRAY AND SZ CLUSTERS

last caustic — physical boundary for the DM;

profile falls at a location that is 20% smaller than expected

SM et al. (in prep)

 Splashback-like features around Xray and SZ clusters (work in progress, limited by sample sizes currently)

SIDM then dissipative force can reduce the splash radius but ?

New signatures

Courtesy Prasenjit Saha

Black-hole Spin Constraint

Courtesy Chris Kouvaris

The Shadow of the Earth

Relative rate enhancement due to Earth-scattering (attenuation only)

Possible signature in annual and diurnal modulation

Sabre (Australia) in a good place

Globular clusters in dSphs

GCs need cored DM distribution to survive inside a dSph:

Kleyna et al., ApJ 2003 (Ursa Minor) See also Goerdt et al., MNRAS 2006 (Fornax), Contenta et al., 2017 (Eri II), Amorisco, ApJ 2017 (Eri II & And XXV).

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 = < G = < G = < G = < G = < G = < G = < G = < G = < G = < G =

Dmytro made a point about proper motions

it is good...

THEIA

Microarcsecond Astrometric Observatory

<u>Dark Matter</u> <u>in dSphs</u>

CDM halos can be heated by bursty star formation inside the stellar half light radius $R_{I/2}$, if star formation proceeds for long enough.

Some **dSphs like Fornax** have formed stars for almost a Hubble time and so **should have large central dark matter cores**, while others, like **Draco and Ursa Major2 should retain their steep central dark matter cusp**.

But it depends on the DM nature.

We can tell how DM is distributed and discriminate between cusp/core distributions

Theia can probe self-interactions

Fig. 2.2: Reconstruction of the DM halo profile of the Draco dSph without (*blue*) and with (*red*) proper motions using the mass-orbit modeling algorithm of Watkins et al. (2013). Four mocks of Draco were used, with cored (*left*) and cuspy (*right*) DM halos, and with isotropic velocities everywhere (*top*) or only in the inner regions with increasingly radial motions in the outer regions (*bottom*). The effective (half-projected light) radii of each mock is shown with the *arrows*. The stellar proper motions in the mocks were given errors, function of apparent magnitude, as expected with 1000 hours of observations spread over 4 years. Only with proper motions can the DM density profile be accurately reconstructed, properly recovering its cuspy or cored nature.

Conclusion

"Long lived" SIDM 1992...

Model building

N-body simulations

Observations

