SIDM particle model building

Bryan Zaldívar LAPTh, Annecy

SIDM Workshop, Niels Bohr Institute, Copenhagen, August 2017

Outline

Start from the original idea, and then see where it takes you next...

Original Idea

(Spergel and Steinhardt, astro-ph/9909386)

Mean free path
$$\lambda \sim 1 {
m kpc} - 1 {
m Mpc}$$

$$\lambda \approx \frac{1}{n\sigma} = \frac{m}{\rho\sigma}$$

$$\sigma/m \sim (0.4 - \underline{400}) \frac{\mathrm{cm}^2}{\mathrm{g}} \left(\frac{0.4 \mathrm{GeV/cm}^3}{\rho}\right)$$

funnily, covering the ballpark of nucleon self-interactions ($np \to np\,$) – and ${\sim}10^{12}\,$ times larger than WIMP predictions –

"We propose [...] dark matter that is cold, non-dissipative, but self-interacting."

As a result:

- centres of halos are spherical
- DM will have cored profiles
- DM will remain collissionless at large scales

Summary of constraints today

Positive observations	σ/m	$v_{ m rel}$	Observation
Cores in spiral galaxies	$\gtrsim 1~{ m cm^2/g}$	30-200 km/s	Rotation curves
(dwarf/LSB galaxies)			
Too-big-to-fail problem			
Milky Way	$\gtrsim 0.6 \ {\rm cm^2/g}$	50 km/s	Stellar dispersion
Local Group	$\gtrsim 0.5 \ {\rm cm^2/g}$	$50 \ \mathrm{km/s}$	Stellar dispersion
Cores in clusters	$\sim 0.1 \; \rm cm^2/g$	$1500 \ \mathrm{km/s}$	Stellar dispersion, lensing
Abell 3827 subhalo merger	$\sim 1.5 \; \rm cm^2/g$	$1500 \ \mathrm{km/s}$	DM-galaxy offset
Abell 520 cluster merger	$\sim 1~{ m cm^2/g}$	$2000-3000~\rm km/s$	DM-galaxy offset

Constraints

Halo shapes/ellipticity	$\lesssim 1 \ {\rm cm^2/g}$	1300 km/s	Cluster lensing surveys
Substructure mergers	$\lesssim 2~{ m cm^2/g}$	$\sim 500-4000 \; \rm km/s$	DM-galaxy offset
Merging clusters	$\lesssim {\rm few} ~{\rm cm}^2/{\rm g}$	2000 - 4000 km/s	Post-merger halo survival
			(Scattering depth $\tau < 1$)
Bullet Cluster	$\left \lesssim 0.7 \ \mathrm{cm}^2/\mathrm{g} \right $	$4000 \ \mathrm{km/s}$	Mass-to-light ratio

(Tulin and Yu, 1705.02358)

Leads to the conclusion that SI xsection could have some velocity-dependence

Ways to obtain ballpark xsections

1) Light-ish dark matter with large couplings

e.g. $\mathcal{L} \supset -rac{g}{4} arphi^4$

[Bento, Bertolami, Rosenfeld & Teodoro, astro-ph/0003350] (the simplest example)

$$m_{\varphi} = 13 \ g^{2/3} \left(\frac{\mathrm{Mpc}}{\lambda} \right) \ \mathrm{MeV}$$

using $ho = 0.4 {
m GeV/cm^3}$

$$\sigma(\varphi\varphi\to\varphi\varphi)=\frac{g^2}{64\pi m_\varphi^2}$$

- Higher order operators possibly present, $-\frac{g}{n!m^{n-4}}\varphi^n$ e.g. glueballs

- Relic abundance can be fixed via a Higgs portal, direct coupling to inflaton, etc

No velocity dependence here:

Some tension with bounds coming from clusters

First example of SIDM

(Carlson, Machacek & Hall, Astrophys.J. 398 (1992) 43-52)

"...as the universe expands, the dark matter **cannibalizes** itself to keep warm."

New mechanism to generate the DM relic abundance, (dark sector secluded from visible sector)

e.g.
$$\mathcal{L} \supset -rac{g}{5!} arphi_s^5$$

Entropy density is conserved in each sector:

$$rac{T_d}{m_{
m DM}}\simeq rac{1}{3\ln(a/ar{a})}$$
 (Temp. of dark sector)

- Original proposal designed for a universe with zero cosmological constant (possible back in '92 :-)
- Soon after excluded from Ly- α observations (small-scale power suppression at ~ 10Mpc)

However...

- Recent revival with the correct cosmology (Cannibal DM, SIMPs, non-thermal DM, ...)

Pappadopulo, Ruderman, Trevisan, 1602.04219

The SIMP Miracle

(Hochberg, Kuflik, Volansky & Wacker, 1402.5143)

25% of the authors [...] are uncomfortable with with the term 'miracle' ...

0

- Relic abundance from cannibalization of $3 \rightarrow 2$

$$\langle \sigma v^2 \rangle_{3 \to 2} = \frac{\alpha_{\text{eff}}^3}{m_{\text{DM}}^5}$$

A (correct dimensions for scattering rate)

- Portal to the visible sector:

$$10^{-9}\sqrt{\alpha_{\rm eff}} \lesssim \epsilon \lesssim 3 \times 10^{-6} \alpha_{\rm eff}$$

- kinetic equilibrium with SM should be invoked (otherwise excluded by structure formation)
- Annihilation to SM should be suppressed wrt 3→2
- Tension between cluster bounds and **perturbativity**

Composite SIDM

(Hochberg, Kuflik, Murayama, Volansky & Wacker, 1411.3727)

- Pion-like dark matter from non-Abelian theory (e.g. $Sp(N_c)$ with $N_f \geq 2$)

Chiral symmetry breaking from quark condensate, giving 5 pions. Non-vanishing Wess-Zumino-Witten term:

5-point interaction responsible for $3 \rightarrow 2$ processes

- Communication with the SM (for kinetic equilibrium) is not automatic, e.g. $U(1) \subset Sp(N_c)$ is gauged (and explicitly broken) leading to massive dark photon with assumed kinetic mixing with SM hypercharge.

Results:

Relevant scales of this model intriguingly similar to QCD $m_{\pi} \sim 300 \text{MeV}$ $f_{\pi} \sim \text{few} \times m_{\pi}$

(Note that still no velocity-dependence)

Glueball SIDM

(Boddy, Feng, Kaplinghat and Tait, 1402.3629)

a) Pure non-Abelian gauge theory + confinement scale Λ At temperatures smaller than Λ the d.o.f. are glueballs

 $\sigma_{SI} \simeq 4\pi / \Lambda^2 \implies \Lambda \sim 0.1 - 0.3 \text{ GeV}$

To solve small-scale problems

b) Supersymmetrize the above model (w/ Anomaly-mediated SB)

So far, no velocity-dependence found in models without DM-mediator mass hierarchy

xsection expected to fall for:

 $a \gtrsim (m_{\rm DM}v)^{-1}$

(scattering length) (Tulin and Yu, 1705.02358)

(subtlety about analogy with neutron-proton scattering)

- large (~20b) xsection due to large scattering length

 $\lim_{k \to 0} \sigma = 4\pi a^2$

- a diverges for $E_b \to 0$ bound state

[Atomic DM, Cline, Liu, Moore, 1311.6468, 1312.3325]

$$E_b \simeq \alpha^2 \mu_H / 2$$

...ultimately related to pion-exchange

Ways to obtain ballpark xsections

(now with velocity-dependence!)

Velocity dependence

Interaction regimes

[Tulin, Yu & Zurek, 1302.3898]

Partial-wave analysis

$$\sigma_T = \frac{4\pi}{k^2} \sum_{\ell=0}^{\infty} (\ell+1) \sin^2(\delta_{\ell+1} - \delta_\ell)$$

 $\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR_\ell}{dr}\right) + \left(k^2 - \frac{\ell(\ell+1)}{r^2} - 2\mu V(r)\right)R_\ell = 0$

 $\lim_{r \to \infty} R_{\ell}(r) \propto \cos \delta_{\ell} j_{\ell}(kr) - \sin \delta_{\ell} n_{\ell}(kr)$

Features of long-range SI's

[Tulin, Yu & Zurek, 1302.3898]

Yukawa model

(a poor phenomenologist's next step)

What about complementary probes of SIDM ?

(cosmology, colliders, indirect detection, direct detection)

(See talk by Sean)

Collider searches

Assume **non-zero** coupling between mediator and SM

- bound-state production + decay
- complementarity with: $e^+e^- \rightarrow \bar{\chi}\chi + 2V$
- Low SM backgrounds
- Also from fixed-target experiments

[An, Echenard, Pospelov & Zhang, 151005020]

See also:

- Higgs decaying to invisible [Kouvaris, Shoemaker, Tuominen, 1411.3730]

Cosmological probes

Assume zero coupling between (relativistic) mediator and SM

- DM coupling to bath of dark radiation give rise to DAO's until decoupling happens

[Cyr-Racine, Putter, Raccanelli, 1310.3278]

But also see:

deviations in matter power spectrum & structure of galactic halos

[Buckley, Zavala, Cyr-Racine, Sigurdson, Vogelsberger, 1405.2075]

Cosmological probes

Assume **non-zero** coupling between mediator and SM

- **BBN**:

Late decays of mediator η can spoil BBN predictions unless

 $au_\eta \lesssim 10^4~{
m secs},$ or $\Omega_\eta h^2 \lesssim 10^{-5}$ [Jedamzik & Pospelov, 0906.2087] (for $Br_h=0$)

- CMB:

a) DM annihilating at redshifts $100 \leq z \leq 1400$ can be probed with CMB data, giving a limit of: $m_{\rm DM} \leq 10 {\rm GeV}$ [Madhavacheril, Sehgal & Slatyer, 1310.3815; Slatyer, 1506.03811]

(depending on annihilation channel)

b) Late decays of mediator could distort the CMB spectrum unless

 $\Omega_{\eta} h^2 \lesssim 10^{-8}$ for $10^{12} {
m s} \lesssim au_{\eta} \lesssim 10^{17} {
m s}$ [Slatyer, 1211.0283]

- X-ray emission: (EGRET, INTEGRAL, COMPTEL, ...) For τ_{η} larger than age of the universe, $\eta \rightarrow \gamma \gamma$ could give too large X-ray excess unless $\tau_{\eta} \gtrsim 10^{27} - 10^{28} \sec \times (\Omega_{\eta} h^2 / 0.12)$ [Essig, Kuflik, McDermott, Volansky & Zurek, 1309.4091] (depending on mediator mass)

Cosmological probes

Assume thermal equilibrium between dark and visible sectors

Consider a model with light-mediator (via Higgs-portal for definiteness)

- Easily produce the right amount of self-interactions
- However severely excluded:

if $2m_e < m_\eta < 2m_\mu$

Large abundance of mediator, thus BBN lower bound on mixing incompatible with upper bound from LUX plus (DM) annihilations from CMB

if $m_{\eta} < 2m_e$

According to the value of τ_{η} , excluded by (DM) **annihilations from CMB**, (mediator) **late decays from CMB**, or **X-ray emission**

Indirect detection

[Bringmann, Kahlhoefer, Schmidt-Hoberg & Walia, 1612.00845]

Assumptions: 1) s-wave DM annihilation

- 2) kinetic-mixing w/ photons
- 3) dark sector thermalised with SM at some point before freeze-out

What if SIDM was never in thermal equilibrium with the visible sector?

Different thermal histories of DM

Different thermal histories of DM

Dark Freeze-out (T' < T)

- Freeze-in production + dark annihilation

T': temperature of dark sector T': temperature of visible sector

Dark freeze-out (T' < T)

Consider the same model with light-mediator as before (via Higgs-portal) [Bernal, Chu, Garcia-Cely, Hambye & Zaldivar, 1510.08063]

Dark thermalisation still produces large population of mediators

Thus, **excluded.** (Similar conclusions for mediators lighter than electrons) All of these naturally leads (me) to **freeze-in** ...

Freeze-in

Sticking to same model with light-mediator (via Higgs-portal) [Bernal, Chu, Garcia

[Bernal, Chu, Garcia-Cely, Hambye & Zaldivar, 1510.08063]

No dark thermalisation, thus low abundance of light mediators w.r.t. DM

Conclusions

Assuming SIDM is the solution to small-scale problems, data seems to prefer the freeze-in DM production mechanism.

