Late Kinetic Decoupling and Self-Interacting Dark Matter

Jörn Kersten

UNIVERSITY OF BERGEN

Based on Torsten Bringmann, Håvard Ihle, JK, Parampreet Walia, PRD 94, 103529 (2016) [arXiv:1603.04884] Torsten Bringmann, Jasper Hasenkamp, JK, JCAP 07, 042 (2014) [arXiv:1312.4947]

- Standard solution to missing satellites problem
- Neither hot nor cold
 some free streaming
 smaller structures washed out
- Creates cores in dwarf galaxies if free-streaming length > dwarf size → prevents formation of dwarf Catch 22 problem of WDM Macciò et al., MNRAS 424 (2012)

Bode & Ostriker, ApJ 556 (2001)

Kinetic Decoupling

Many more partners for scattering than for annihilation
 → Kinetic decoupling much later than freeze-out, T_{kd} ≪ T_{fo}

Kinetic Decoupling

- Many more partners for scattering than for annihilation
 → Kinetic decoupling much later than freeze-out, T_{kd} ≪ T_{fo}
- $T_{\chi} = T$ until kinetic decoupling

Kinetic Decoupling

- Many more partners for scattering than for annihilation
 → Kinetic decoupling much later than freeze-out, T_{kd} ≪ T_{fo}
- $T_{\chi} = T$ until kinetic decoupling
- Standard WIMPs: T_{kd} ≥ 1 MeV → effect negligible Bringmann, New J. Phys. 11 (2009)

Suppressing Dwarfs by Late Kinetic Decoupling

• Dark matter density fluctuations damped by

- collisional damping (viscous coupling to SM particles)
- free-streaming after kinetic decoupling
- acoustic oscillations shared with SM particles
- ~ Structure formation suppressed at small scales

Green, Hofmann, Schwarz, JCAP **08** (2005) Loeb & Zaldarriaga, PRD **71** (2005)

See talk by Francis-Yan Cyr-Racine

Vogelsberger et al., MNRAS 460 (2016)

Suppressing Dwarfs by Late Kinetic Decoupling

• Dark matter density fluctuations damped by

- collisional damping (viscous coupling to SM particles)
- free-streaming after kinetic decoupling
- acoustic oscillations shared with SM particles

→ Structure formation suppressed at small scales Green, Hofmann, Schwarz, JCAP 08 (2005) Loeb & Zaldarriaga, PRD 71 (2005)

See talk by Francis-Yan Cyr-Racine

Cutoff in power spectrum of density fluctuations
 Minimal halo mass Vogelsberger et al., MNRAS 460 (2016)

$$M_{
m cut} = 5 \cdot 10^{10} \left(rac{100 \ {
m eV}}{T_{
m kd}}
ight)^3 h^{-1} \, M_{\odot}$$

• Want: $M_{cut} \simeq 10^{10} M_{\odot}$ \rightsquigarrow Missing satellite problem solved with cold DM for $T_{kd} \lesssim 1 \text{ keV}$

Suppressing Dwarfs by Late Kinetic Decoupling

Similarity to WDM cosmology confirmed by N-body simulations

- Need scattering partner γ̃ with large abundance until T_{kd} ≤ 1 keV
 → photon, (SM) neutrino, dark radiation
- Here: classification of all minimal possibilities

Bringmann, Ihle, JK, Walia, PRD 94 (2016)

- Need scattering partner γ̃ with large abundance until T_{kd} ≤ 1 keV → photon, (SM) neutrino, dark radiation
- Here: classification of all minimal possibilities Bringmann, Ihle, JK, Walia, PRD 94 (2016)
- Scattering amplitude close to kinetic decoupling:

$$|\mathcal{M}|^{2} \simeq c_{n} (E_{\tilde{\gamma}}/m_{\chi})^{n}$$

$$\rightsquigarrow M_{\text{cut}} \simeq M_{n} \left(\frac{T_{\tilde{\gamma}}}{T}\right)^{3\frac{n+4}{n+2}} \left(\frac{c_{n}}{10^{-3}}\right)^{\frac{3}{n+2}} \left(\frac{100 \text{ GeV}}{m_{\chi}}\right)^{3\frac{n+3}{n+2}}$$

$$\chi$$

$$\tilde{\gamma}$$

$$\tilde{\gamma}$$

 \rightarrow Need large coefficients c_n and/or light dark matter

Model Classification

- Consider all dark matter and dark radiation spin combinations
- Assume Z₂ symmetry to stabilize dark matter
- Consider all renormalizable and gauge-invariant interactions
- Types of scattering diagrams:

Model Classification

- Consider all dark matter and dark radiation spin combinations
- Assume Z₂ symmetry to stabilize dark matter
- Consider all renormalizable and gauge-invariant interactions
- Types of scattering diagrams:

- Take into account inherently related processes
 - Dark matter relic density $(\chi \chi \rightarrow \tilde{\gamma} \tilde{\gamma})$
 - Dark matter self-interactions ($\chi\chi \to \chi\chi$)

Two-Particle Models

		Late kinetic decoupling	DM relic density	DM self- interactions				
$\tilde{\gamma} \setminus \chi$		Scalar			Fermion			Vector
	TOP	LKD	ТР	σ_T	LKD	TP	σ_T	
	4p	$m_\chi \lesssim \text{MeV}$	Yes	Constant		(only dim $> 4)$		
Scalar	t	$m_{\tilde{\gamma}} \sim 1 \text{ keV}$ $m_{\chi} \gtrsim 100 \alpha_{\chi}^{3/5} \text{ TeV}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{ MeV}$)	Yukawa	$m_{\tilde{\gamma}} \sim 1 \text{ keV}$ $m_{\chi} \gtrsim 100 \alpha_{\chi}^{3/5} \text{ TeV}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 { m MeV}$)	Yukawa	$\langle \sigma_T \rangle_{30}$
	s/u		$\langle \sigma_T \rangle_{30}$			$\langle \sigma_T \rangle_{30}$		
Fermion		(only dim > 4 due to Z_2)			(only dim $> 4)$			Z_2
	4p	(only $\dim > 4$)			(only dim $> 4)$			Z_2
Vector	s/u	$\langle \sigma_T angle_{30}$			$\langle \sigma_T \rangle_{30}$			
	SU(N)	$\begin{array}{l} m_{\tilde{\gamma}} \sim 1 \mathrm{keV} \\ _{m_{\chi} \gtrsim 10 \alpha_{\chi}^{3/5} \mathrm{TeV}} \end{array}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{ MeV}$)	Yukawa	$m_{\tilde{\gamma}} \sim 1 \text{ keV} \ _{m_{\chi} \gtrsim 10 \alpha_{\chi}^{3/5} \text{ TeV}}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{MeV}$)	Yukawa	$(\text{only broken} \\ SU(M) \rightarrow \\ SU(N))$

Two-Particle Models

		Late kinetic decoupling	DM relic density	DM self- interactions				
$\tilde{\gamma} \setminus \chi$		Scalar			Fermion			Vector
	TOP	LKD	TP	σ_T	LKD	TP	σ_T	
	4p	$m_\chi \lesssim \text{MeV}$	Yes	Constant		$({\rm only}\ {\rm dim}>4)$		
Scalar	t	$m_{\tilde{\gamma}} \sim 1 \text{ keV} \\ m_{\chi} \gtrsim 100 \alpha_{\chi}^{3/5} \text{ TeV}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{ MeV}$)	Yukawa	$\begin{array}{c} m_{\tilde{\gamma}} \sim 1 \mathrm{keV} \\ _{m_{\chi} \gtrsim 100 \alpha_{\chi}^{3/5} \mathrm{TeV}} \end{array}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{MeV}$)	Yukawa	$\langle \sigma_T \rangle_{30}$
	s/u		$\langle \sigma_T \rangle_{30}$			$\langle \sigma_T \rangle_{30}$		
Fermion		(only dim > 4 due to Z_2)				(only dim $> 4)$		Z_2
	4p (only dim > 4)			$(only \dim > 4)$			Z_2	
Vector	s/u	$\langle \sigma_T \rangle_{30}$			$\langle \sigma_T angle_{30}$			
	SU(N)	$m_{\tilde{\gamma}} \sim 1 \text{ keV}$ $m_{\chi} \gtrsim 10 \alpha_{\chi}^{3/5} \text{ TeV}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{ MeV}$)	Yukawa	$m_{\tilde{\gamma}} \sim 1 \text{ keV}$ $m_{\chi} \gtrsim 10 \alpha_{\chi}^{3/5} \text{ TeV}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{MeV}$)	Yukawa	$(\text{only broken} \\ SU(M) \rightarrow \\ SU(N))$

• Massless DR and MeV DM possible for scalar portal: $\mathcal{L} \supset \chi^2 \tilde{\gamma}^2$

• Scalar or non-Abelian keV DR and scalar or fermion DM possible

Three-Particle Models

• Additional particle in *s*/*u*-channel

- Nearly degenerate with DM
 on-shell enhancement
- Solution of missing satellites possible for $m_{\chi} \lesssim 10 \text{ GeV}$

Three-Particle Models

• Additional particle in *s*/*u*-channel

- Nearly degenerate with DM
 → on-shell enhancement
- Solution of missing satellites possible for $m_{\chi} \lesssim 10 \text{ GeV}$

• Additional particle V in t-channel

- Light ~ enhanced scattering rate
- Missing satellites solved for almost any DM mass
- Correct DM density from $\chi\chi \rightarrow VV$
- DM self-interactions
 ~> all small-scale problems solved

Desired Self-Interactions with t-Channel Mediator

 \rightsquigarrow Both $m_{\chi} \sim$ GeV and $m_{\chi} \sim$ TeV work

See talks by Bryan Zaldivar and this afternoon

Dark matter annihilation to light mediator $\chi\chi \rightarrow VV$ enhanced by

- Sommerfeld effect Bringmann, Kahlhoefer, Schmidt-Hoberg, Walia, PRL 118 (2017)
- Bound state formation Cirelli, Panci, Petraki, Sala, Taoso, JCAP 05 (2017)
- → Ruled out by CMB and indirect DM searches, if mediator decays dominantly to SM particles

See talks by Bryan Zaldivar and this afternoon

Dark matter annihilation to light mediator $\chi\chi \rightarrow VV$ enhanced by

- Sommerfeld effect Bringmann, Kahlhoefer, Schmidt-Hoberg, Walia, PRL 118 (2017)
- Bound state formation Cirelli, Panci, Petraki, Sala, Taoso, JCAP 05 (2017)
- Ruled out by CMB and indirect DM searches, if mediator decays dominantly to SM particles
- → Way out: invisible decays

- Dark matter χ
 - Standard Model singlet
 - Charged under U(1)_X gauge interaction
 - Mass $m_\chi \sim {
 m TeV}$
- Light gauge boson V, $m_V \sim {
 m MeV}$
- ----- Long-range, velocity-dependent interaction
- → Less cuspy density profiles
- ~ Cusp-core and too big to fail solved

Feng, Kaplinghat, Yu, PRL **104** (2010) Loeb, Weiner, PRL **106** (2011) Vogelsberger, Zavala, Loeb, MNRAS **423** (2012)

- Sterile neutrino ${\it N}\equiv\tilde{\gamma}$
 - Mass $m_N \lesssim eV$
 - Forms dark radiation
 - Standard Model singlet
 - Charged under $U(1)_X$ ("secret interactions")
- Dark matter scatters off sterile neutrinos

- Sterile neutrino $N \equiv \tilde{\gamma}$
 - Mass $m_N \lesssim eV$
 - Forms dark radiation
 - Standard Model singlet
 - Charged under $U(1)_X$ ("secret interactions")
- Dark matter scatters off sterile neutrinos
- → Late kinetic decoupling

~ All small-scale problems of structure formation solved

Bringmann, Hasenkamp, JK, JCAP **07** (2014) Dasgupta, Kopp, PRL **112** (2014) Ko, Tang, PLB **739** (2014) Chu, Dasgupta, PRL **113** (2014)

\rightsquigarrow Dark matter annihilation constraints avoided by decay $V \rightarrow NN$

Dark Matter Production

• High temperatures: $U(1)_X$ sector thermalized via Higgs portal

 $\mathcal{L}_{\mathsf{Higgs}} \supset \kappa |H|^2 |\Theta|^2$

• $\langle \Theta \rangle \sim \text{MeV}$ breaks $U(1)_X$

Dark Matter Production

• High temperatures: $U(1)_X$ sector thermalized via Higgs portal

 $\mathcal{L}_{\mathsf{Higgs}} \supset \kappa |H|^2 |\Theta|^2$

- $\langle \Theta \rangle \sim \text{MeV}$ breaks $U(1)_X$
- $T_\chi \sim m_\chi/$ 25: freeze-out (chemical decoupling) of dark matter

$$\Omega_{ ext{CDM}} h^2 \sim 0.11 \left(rac{0.67}{g_X}
ight)^4 \left(rac{m_\chi}{ ext{TeV}}
ight)^2$$

(neglecting **bound state** formation)

Cold Dark Matter Parameter Space

- Blue band can be moved vertically by changing sterile neutrino charge and temperature
- Crosses: simulations show that too big to fail solved

Results from ETHOS

N-body simulation with DM-DM and DM-N interactions

Vogelsberger et al., MNRAS 460 (2016)

Results from ETHOS

N-body simulation with DM-DM and DM-N interactions

Vogelsberger et al., MNRAS 460 (2016)

- Confirms solution (alleviation) of too big to fail, missing satellites
- Cusp-core and rotation curve diversity unclear (but see talk by Hai-Bo Yu)

Hints for Hot Dark Matter

- 3 σ tension: CMB (z > 1000) vs. local (z < 10) observations
- Expansion rate
 - Planck: $H_0 = (67.8 \pm 0.9) \frac{\text{km}}{\text{s Mpc}}$ A&A 594 (2016)
 - Hubble: $H_0 = (73.24 \pm 1.74) \frac{\text{km}}{\text{s Mpc}}$ Riess et al., ApJ 826 (2016)
- Magnitude of matter density fluctuations (σ₈)
- Resolved by hot dark matter component \simeq dark radiation
- Best fit:

$$\Delta N_{\rm eff} = 0.61$$
$$m_s^{\rm eff} \equiv \left(\frac{T_s}{T_\nu}\right)^3 m_s = 0.41 \text{ eV}$$

Hamann, Hasenkamp, JCAP **10** (2013) Gariazzo, Giunti, Laveder, JHEP **11** (2013) Wyman, Rudd, Vanderveld, Hu, PRL **112** (2014) Battye, Moss, PRL **112** (2014)

~ Added value of sterile neutrino

- *T* ↓ → Higgs portal no longer effective
 → *U*(1)_X sector decouples at *T*^{dpl}_X (depending on κ)
- SM particles becoming non-relativistic afterwards heat SM bath, not U(1)_X bath → T_N < T_ν (depending on number of d.o.f. g_{*})

$$\Delta N_{\text{eff}}(T) = \left(\frac{T_N}{T_\nu}\right)^4 = \left. \left(\frac{g_{*,\nu}}{g_{*,N}}\right)^{\frac{4}{3}} \right|_T \left. \left(\frac{g_{*,N}}{g_{*,\nu}}\right)^{\frac{4}{3}} \right|_{T_x^{\text{dpl}}}$$

- *T* ↓ → Higgs portal no longer effective
 → *U*(1)_X sector decouples at *T*^{dpl}_X (depending on κ)
- SM particles becoming non-relativistic afterwards heat SM bath, not U(1)_X bath → T_N < T_ν (depending on number of d.o.f. g_{*})

$$\Delta N_{\text{eff}}(T) = \left(\frac{T_N}{T_\nu}\right)^4 = \left(\frac{g_{*,\nu}}{g_{*,N}}\right)^{\frac{4}{3}} \bigg|_T \left(\frac{g_{*,N}}{g_{*,\nu}}\right)^{\frac{4}{3}} \bigg|_{T_x^{\text{dpl}}}$$
$$\Delta N_{\text{eff}|\text{BBN}} < \left(\frac{58.4}{g_{*,\nu}(T_x^{\text{dpl}})}\right)^{\frac{4}{3}} \stackrel{!}{\lesssim} 1$$

→ BBN bounds satisfied for $T_x^{dpl} \gtrsim 1 \text{ GeV}$ → Correct order of magnitude for hot dark matter hint

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1 → ruled out by Planck
- U(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for T ≥ MeV

Hannestad, Hansen, Tram, PRL **112** (2014) Dasgupta, Kopp, PRL **112** (2014)

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1 → ruled out by Planck
- U(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for T ≥ MeV

Hannestad, Hansen, Tram, PRL **112** (2014) Dasgupta, Kopp, PRL **112** (2014)

T < MeV: mixing unsuppressed → additional production of sterile neutrinos via U(1)_X

Bringmann, Hasenkamp, JK, JCAP **07** (2014) Mirizzi, Mangano, Pisanti, Saviano, PRD **91** (2015) Tang, PLB **750** (2015) Chu, Dasgupta, Kopp, JCAP **10** (2015) Cherry, Friedland, Shoemaker, arXiv:1605.06506 Forastieri et al., arXiv:1704.00626

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1 → ruled out by Planck
- *U*(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for *T* ≥ MeV

Hannestad, Hansen, Tram, PRL **112** (2014) Dasgupta, Kopp, PRL **112** (2014)

T < MeV: mixing unsuppressed → additional production of sterile neutrinos via U(1)_X

Bringmann, Hasenkamp, JK, JCAP **07** (2014) Mirizzi, Mangano, Pisanti, Saviano, PRD **91** (2015) Tang, PLB **750** (2015) Chu, Dasgupta, Kopp, JCAP **10** (2015) Cherry, Friedland, Shoemaker, arXiv:1605.06506 Forastieri et al., arXiv:1704.00626

\rightsquigarrow Cosmology (ΔN_{eff}) still fine, but m_N too small to explain neutrino oscillation anomalies

• Late kinetic decoupling can solve missing satellites problem

- Need new dark radiation particle as scattering partner
- Favorite scenario: *t*-channel mediator with mass $\sim MeV$
 - → correct dark matter relic density
 - → DM self-interactions solve cusp-core, too big to fail problems
- Concrete model
 - $\bullet~$ Dark matter with mass $\sim \text{TeV}$
 - Sterile neutrino with mass $\lesssim eV \rightsquigarrow$ small hot DM component
 - $\bullet\,$ Gauge boson with mass $\sim MeV \rightsquigarrow$ secret interactions

Timeline

t \uparrow $\gtrsim m_{\chi} \sim \text{TeV: thermalization of } U(1)_X \text{ sector}$ $T_{\chi}^{\text{fo}} \sim m_{\chi}/25: \text{ CDM freeze-out}$ $T_x^{\text{dpl}} \gtrsim 10 \text{ GeV: } U(1)_X \text{ sector decoupling}$ SM particles heat SM bath matter effects prevent ${\cal N}_1$ over production $+ T_{\nu}^{\text{dpl}} \sim \text{MeV}$: active neutrino decoupling $\begin{array}{c|c} \mathbf{B} \\ \mathbf{N} \\$ $M + T_{eq} \sim 1$ eV: matter-radiation equality $\begin{array}{c} \mathbf{B} & = & T_{\gamma}^{\mathrm{dpl}} \sim 0.2 \ \mathrm{eV: \ photon \ decoupling} \\ & & N_1 \ \mathrm{becomes \ non-relativistic} \\ & & \mathbf{CDM-CDM \ scattering \ via \ Yukawa \ potential} \\ & & \mathbf{T} & T_0 \sim 0.2 \ \mathrm{meV: \ today} \end{array}$

- Dirac fermion χ (dark matter), $m_{\chi} \sim {\rm TeV}$
- Gauge boson V, m_V ~ MeV
- Kinetic mixing $F^{X}_{\mu\nu}F^{\mu\nu}$, $F^{X}_{\mu\nu}Z^{\mu\nu}$ negligible
- Scalar Θ breaking $U(1)_X$, $\langle \Theta \rangle \sim MeV$
- Light sterile neutrino $N, m_N \lesssim eV$
- Heavier sterile neutrino N_2 , $m_{N_2} \sim \text{MeV} \rightsquigarrow$ cancel anomalies
- Scalar ξ , $\langle \xi \rangle < \langle \Theta \rangle \rightsquigarrow$ active-sterile neutrino mixing

$$\mathcal{L}_N \supset -rac{Y_M}{2} \Theta^\dagger \, \overline{N^c} N - rac{Y'_M}{2} \Theta \, \overline{N_2^c} N_2 - rac{Y_\nu}{\Lambda} \xi \tilde{\phi} \, \overline{\ell_L} N + ext{h.c.}$$

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1
- U(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for T ≥ MeV

Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1
- U(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for T ≥ MeV
 Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)
- *T* < MeV: mixing unsuppressed
 → additional production of sterile neutrinos via U(1)_X?
 Bringmann, Hasenkamp, JK, JCAP 07 (2014)
- Oscillations + $U(1)_X$ -mediated scatterings $NN \rightarrow NN$ $\rightarrow N$ re-thermalize: $T_N = T_{\nu}$

Mirizzi, Mangano, Pisanti, Saviano, PRD 91 (2015); Tang, PLB 750 (2015)

● Irreversible process ~→ only kinetic equilibrium Chu, Dasgupta, Kopp, JCAP 10 (2015)

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1
- U(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for T ≥ MeV
 Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)
- *T* < MeV: mixing unsuppressed
 → additional production of sterile neutrinos via U(1)_X?
 Bringmann, Hasenkamp, JK, JCAP 07 (2014)
- Oscillations + U(1)_X-mediated scatterings NN → NN
 → N re-thermalize: T_N = T_ν
 Mirizzi, Mangano, Pisanti, Saviano, PRD 91 (2015); Tang, PLB 750 (2015)
- Irreversible process ~→ only kinetic equilibrium Chu, Dasgupta, Kopp, JCAP 10 (2015)

 $\rightsquigarrow \Delta N_{\text{eff}}|_{\text{CMB}} \simeq \text{const.}$, but $T_N \uparrow \rightsquigarrow m_s^{\text{eff}} \uparrow \land$ $\rightsquigarrow \text{Cosmology still fine, but neutrino anomalies not explained}$

$$m_N \sim 1 \; {
m eV} > T_{
m rec} \sim 0.3 \; {
m eV}$$

→ sterile neutrinos not highly relativistic during CMB epoch Jacques, Krauss, Lunardini, PRD 87 (2013)

$$N_{ ext{eff}} = N_{ ext{eff}}^{ ext{rel}} \left(rac{3}{4} + rac{1}{4} \, rac{P_{m_N=1 \, ext{eV}}}{P_{m_N=0}}
ight)$$

 $\rightsquigarrow N_{\text{eff}} \downarrow$ $\rightsquigarrow \text{ even } \Delta N_{\text{eff}} < 0 \text{ possible } \rightsquigarrow \text{ possible test for scenario}$

Mirizzi, Mangano, Pisanti, Saviano, PRD **91** (2015) Chu, Dasgupta, Kopp, JCAP **10** (2015)

Cosmological Mass Bound

- CMB + BAO $\rightsquigarrow m_s^{eff} < 0.38~eV$ at 95% CL Planck, A&A 594 (2016)
- Bound due to free-streaming of sterile neutrinos
- $U(1)_X$ interactions \rightsquigarrow free-streaming scale reduced

Cosmological Mass Bound

- CMB + BAO $\rightsquigarrow m_s^{eff} < 0.38~eV$ at 95% CL Planck, A&A 594 (2016)
- Bound due to free-streaming of sterile neutrinos
- $U(1)_X$ interactions \rightsquigarrow free-streaming scale reduced
- Most sensitive constraints from Ly- α forest

Chu, Dasgupta, Kopp, JCAP 10 (2015)

 $\rightsquigarrow m_N \sim$ 1 eV can be consistent with cosmology

Jörn Kersten