Galaxy-mass offsets/wobbles in Hubble Frontier Field clusters and isolated galaxies using multiple image lensing

Liliya Williams (U Minnesota)

Kevin Sebesta

Matthew Gomer

Jori Liesenborgs (U Hasselt)

Offsets/wobbles in massive galaxies of Hubble Frontier Field Clusters

Galaxy-scale mass-light offsets in clusters

Calculations/predictions:

Kahlhoefer+2014, 2015

Kim+2016

Harvey+2016

Taylor+2017

Detections with strong lensing:

Williams & Saha 2011

Mohammed+2015

Massey+2015, 2017 (in prep.)

Harvey+2017

We use Grale to do lens inversion

free-form adaptive grid lens inversion method solutions found using genetic algorithm; does not use any information about cluster/galaxy light (Liesenbogs+2008, 2010, 2012)

We measure mass-light offsets between central galaxies in clusters and the nearest mass peak, $\sim 0-15$ kpc, and estimate statistical significance

Mass-light offsets could be due to *SIDM* or purely *Newtonian gravity*

Hubble Frontier Field Clusters

Accuracy of lens mass reconstructions depends on the quality of the input data

HFF clusters are some of the richest in lensed images, and have the most spectroscopic redshifts

of spec z's:

MACS 1149: 10 sources with 24 ims

MACS 0717: 10 sources with 30 ims

Abell S1063: 22 sources with 58 ims

Abell 2744: 30 sources with 88 ims

MACS 0416: 39 sources with 107 ims

Abell 370: 38 sources with 116 ims

Caminha+2016

Karman+2017

Diego+2016

Lagattuta+2016, 2017

Abell 3827 is tailor-made to detect offsets How do HFF clusters compare?

To detect galaxy-mass offsets using multiply imaged sources, one needs high image density close to galaxies

Within separations of ~20 kpc, Abell 3827 has nearly **x100 more images** than HFF clusters.

A3827 is rather unique!

How we measure offsets and their statistical significance

Each Grale reconstruction is an average of ${\mathcal N}$ individual mass maps

We measure offsets from the ensemble average mass map

Offsets in \mathcal{N} individual mass maps are used to estimate uncertainty, in two different ways: [which one is more appropriate ??]

(1) **Assumption:** each of the \mathcal{N} maps can be considered a fair representation of reality Calculate rms in the spatial distribution of mass peaks from \mathcal{N} individual mass maps \rightarrow Significance= offset/rms

(2) **Assumption:** only the ensemble average of \mathcal{N} maps is a fair representation of reality Significance = offset/rms/square root(\mathcal{N})

Use Hera to calibrate Grale's ability to detect mass-light offsets

Grale map of Hera simulated cluster

Grale map of Abell S1063

offset = 4.8 kpc offset/rms = 0.25 offset/rms/ \sqrt{N} = 1.56

Grale map of MACS 0416

Offsets/wobbles in isolated galaxies

An interesting property of quad lenses

An interesting property of quad lenses

An interesting property of quad lenses

Double-mirror symmetric lenses with different density profile slopes and ellipticities produce *nearly identical* surfaces in 3D angles space

Fundamental Surface of Quads, FSQ

FSQ as a reference surface

Lenses that are not double-mirror symmetric do not lie on FSQ. Instead, produce different distributions of quads around FSQ.

What type of substructure can reproduce deviations from the FSQ?

10xLCDM model--

based on Springel+2008 Aquarius sim. results, but each subhalo's mass has been increased by x10

- →stars + DM distrib.
- →perturbations from elliptical isodens

$$\Delta R = \sum_{k=3}^{6} a_k \cos(k\phi) + b_k \sin(k\phi)$$

- →DM-stars offset, < 1kpc
- → magnification bias

Fundamental Surface of Quads

Advantages of this approach of extracting information on lens mass distribution, from galaxy quads

- * Polar image angles are straightforward to measure
- * No fitting of models to individual lenses
 - → model free
 - → lensing degeneracies not an issue
- * Use quad population as a whole

Future surveys, LSST, DES,..., with follow up from HST, JWST, LBT will uncover 100's – 1000's quads, with well defined selection cuts

Summary

Offsets detected in clusters & galaxies, using two very different techniques

HST Frontier Field Clusters:

offsets between the brightest galaxies and the nearest mass peaks are \sim 0-15 kpc; statistical significance? *None of the 5 galaxy-mass offsets is larger than \sim15 kpc.*

Quads hosted by isolated massive galaxies:

distribution of image polar angles of the quad population shows that elliptical+shear and LCDM substructure are not enough to reproduce deviations from the Fundamental Surface of Quads. *Offseting the centers of the stellar and dark matter distribution by <1kpc can reproduce observations.*