

ACDM health check

Andrew Pontzen

Jason McEwen, Stephen Feeney, Fabio Governato, Hiranya Peiris, Jorge Peñarrubia, Nina Roth, Daniela Saadeh, Amélie Saintonge, Michael Tremmel, Marta Volonteri

$\bullet \bullet \bullet \triangleleft > \square$	0.00	🗎 ui.adsabs.harvard.edu	Ç	<u> </u>
ja adsbeta		🧩 Feedback	🕞 ORCID 🗸 🗢 Le	xarn - Sign Up Log In
	QUICK FIELD: Author First Aut Advanced - full:"crisis" full Your search returned 134 results	hor Abstract Year Fulltext :"LCDM"	All Search Terms	
		sort: Relevancy de	sc 🗘	Export -
✓ AUTHORS > □ Bullock, J 6	Hide highlights Show abstracts		0 sel	ected
 Knebe, A Sanchez, N de Vega, H Maartens, R man 	1 □ 2017PhRvD95d3541H2017/02 cited: 75 📄 📰 Ultralight scalars as cosmological dark matter Hui, Lam; Ostriker, Jeremiah P.; Tremaine, Scott and 1 more Haehnelt, "Warm dark matter as a solution to the small scale crisis:		Years Years Il scale crisis: 15	Citations Reads
COLLECTIONS astronomy 128 physics 54 general 3	2 2015PNAS11212249W2 Cold dark matter: Co Weinberg, David H.; Bu and 2 more	2015/10 cited: 168 📄 📰 Ontroversies on small scales ullock, James S.; Governato, Fabio	10 5	
✓ REFEREED □ refereed 94	Can Photoionizatio Astrophys. J. Lett.	on Squelching Resolve the Substruc , 572, L2373. Spergel, D. N.,	ture Cri-sis?,	\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

 Prediction of cosmic microwave background temperature & E-mode polarisation anisotropies (up to a few parameters)

Auborg+ 2015 (BOSS collaboration)

 Prediction of baryon acoustic oscillation scale (and amplitude) in galaxy survey data

Sherwin+ 2017 (ACTPol collaboration)

Prediction of CMB lensing amplitude and approximate scale dependence

Clowe+ 2006 "bullet cluster"

 Prediction of present day mass distribution on ~Mpc scales (and larger)

Some challenges to ACDM

- 1. Anomalies in the cosmic microwave background
- 2. The under-abundance of dwarf galaxies (aka "missing satellites")
- 3. The unexpected dark matter distribution around dwarf galaxies (aka "cusp/core")
- 4. The low masses of dwarf galaxies (aka "too big to fail")
- 5. Unexpected alignments in the distribution of dwarf galaxies
- 6. The existence of a common acceleration scale

CMB anomalies: low-l alignments

(= "missing power" on large scales - see Pontzen & Peiris 2010)

Schwarz+ 2015

CMB anomalies: cold spot

Vielva 2010

CMB anomalies: look elsewhere

<u>ТНТНТНН</u>ТННННТТТННТННН<mark>Н</mark>ТНТТНТНТННТТТН<mark>НТТТТ</mark>ННТТТТНННТТТ НТТТНТТННЫНННТТТНТТТНЫНТТТТТНТТНННТНТНТНТНТНТНТНТНТНТ <u>THHTTTHTTHTHHHHTTTTHHTHH</u>THHHHHTHTT<mark>HHTTHHTHTHTHHTHHTHHTHH</mark>THH

CMB anomalies: look elsewhere

p(T|D) = p(D | T) p(T) / p(D)

Use all the relevant data (or get as close as possible) Be realistic about what other theories are plausible

Even **very** contrived anisotropic theories only improve p(D|T) by factors of a few tens; easily overwhelmed by p(T). Pontzen & Peiris 2010

Chances of anisotropic expansion 121,000:1 against Saadeh+ 2016

Missing satellites (and missing bright galaxies)

Benson et al 2003

With a posteriori solutions, try to find independent cross-checks

nnermost density power law, α

Cusp/ core

Oh+2011 (THINGS collaboration)

Cusp/core

Pontzen & Governato 2014/2012

Also at cluster scale with AGN (e.g. Martizzi, Teyssier & Moore 2013)

Cusp/core

Key prediction from energetic arguments: baryonic-sourced core size scales steeply with stellar mass.

Peñarrubia, Pontzen, Walker, Koposov 2012 Pontzen & Governato 2014

Cusp/core next steps (advert)

Sensitivity to history with "genetic modification" approach; high resolution (1pc) RAMSES-RT sims

Redshift 16.2 0.24 Gyr Step 56

Suppressed merger

Reference

Enhanced merger

Dwarf masses

aka "too big to fail" Boylan-Kolchin+ 2012

Baryonic effects + uncertainty in MW mass scale Zolotov+ 2012

Dwarf masses aka "too big to fail" Ferrero+ 2012 Papastergis & Shankar 2016 HI does not trace potential; survey biases Brooks+ 2017

Alignments

Acceleration scale

McGaugh, Lelli & Schombert 2016

Acceleration

see also e.g. van den Bosch & Dalcanton 2000; Kaplinghat & Turner 2002

ACDM health check

1. There are, as yet, no killer blows to \wedge CDM: It is resilient. That does not mean it is "correct".

2. Focus on physics, not p-values: p(D|T) will always be small; let's see concrete alternative T (and avoid cherry-picking D).

3. There is plenty of fun physics worth focussing on: SIDM, baryon physics, interplay with large scale environment and (especially) combining two or more of these aspects.

