Standard Structure Formation in CDM: Successes & Failures

Hai-Bo Yu University of California, Riverside

SIDM Workshop, Niels Bohr Institute, July 31-August 4, 2017

Review for Physics Reports: Sean Tulin, HBY (2017)

The Standard Model of Cosmology

- Introduce a new particle (X) and assume it is cold and collisionless: CDM
- Possible connections to BSM new physics: WIMPs, axions...

ACDM on Large Scales

works very well, >O(100) kpc

ACDM on Galactic Scales

Illustris Project, Vogelsberger et al. (2014)

Produce a variety of galaxy types consistent with observations

Small-Scale Issues

- Crisis on small scales: galactic scales, <10-100 kpc
 - Core vs. Cusp Diversity Missing Satellites Too-Big-To-Fail
 - Solutions

Observational limitation Baryon physics (see Andrew Pontzen's talk) New physics (the focus of this talk, SIDM)

see Tulin, HBY (2017) for a review

ACDM Predictions on Small Scales

A lot of substructure, a universal density profile, ρ_s and r_s are correlated (the halo concentration-mass relation)

Core vs. Cusp Problem

DM-dominated systems (dwarfs, LSBs)

Many dwarf galaxies prefer a shallow density core, instead of a steep density cusp

Flores, Primack (1994), Moore (1994)

The Diversity Problem

Colored bands: hydrodynamic simulations of ΛCDM

Oman et al. (2015)

The Diversity Problem

See also Kuzio de Naray, Martinez, Bullock, Kaplinghat (2009)

A Big Challenge for ACDM

The unexpected diversity of dwarf galaxy rotation curves

Kyle A. Oman^{1,*}, Julio F. Navarro^{1,2}, Azadeh Fattahi¹, Carlos S. Frenk³, Till Sawala³, Simon D. M. White⁴, Richard Bower³, Robert A. Crain⁵, Michelle Furlong³, Matthieu Schaller³, Joop Schaye⁶, Tom Theuns³

¹ Department of Physics & Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada

² Senior CIfAR Fellow

³ Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom

⁴ Max-Planck Institute for Astrophysics, Garching, Germany

⁵ Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, United Kingdom
 ⁶ Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands

The diversity is expected if dark matter has strong self-interactions

Self-Interacting Dark Matter

Self-interactions thermalize the inner halo

Modelling SIDM Halos

• An analytical SIDM halo model

rate × time $\approx \frac{\langle \sigma v \rangle}{m} \rho(r_1) t_{\text{age}} \approx 1$

$$ho(r) = \left\{ egin{array}{cc}
ho_{
m iso}(r)\,, & r < r_1 \
ho_{
m NFW}(r)\,, & r > r_1 \end{array}
ight.$$

Matching conditions:

 $\rho_{\rm iso}(r_1) = \rho_{\rm NFW}(r_1)$ $M_{\rm iso}(r_1) = M_{\rm NFW}(r_1)$

$$(\rho_0, \sigma_0) \leftrightarrow (\rho_s, r_s)$$

with Kaplinghat, Tulin (2015) with Kamada, Kaplinghat, Pace (2016)

Modelling SIDM Halos

• The model works well remarkably

Addressing the Diversity Problem

DM self-interactions thermalize the inner halo

DM-dominated galaxies: Lower the central density and the circular velocity

Isothermal distribution

$$\rho_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_X/\sigma_0^2}$$

with Kamada, Kaplinghat, Pace (2016)

High Luminous Galaxies

• DM self-interactions tie DM together with baryons

Thermalization leads to higher DM density due to the baryonic influence

$$\rho_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_{\rm B}/\sigma_0^2}$$

with Kamada, Kaplinghat, Pace (2016) with Kaplinghat, Keeley, Linden (2013) with Kaplinghat, Linden (2013)

Solving the Diversity Problem

• DM self-interactions thermalize the inner halo together with baryons High luminous galaxies (NGC 6503): small and dense core Low luminous galaxies (UGC 128): large and shallow core

with Kamada, Kaplinghat, Pace (2016)

Solving the Diversity Problem

• Scatter in the halo concentration-mass relation

V_{max}~25-300 km/s

- Baryon distribution
- DM self-interactions thermalize the inner halo and correlate DM and baryon distributions
 with Kamada, Kaplinghat, Pace (2016)

Tying SIDM to Baryons

SIDM density contour

• SIDM may follow the stellar distribution; halo morphology

Correlation between the stellar distribution and the SIDM distribution

Disk-Halo Conspiracy

• Why is the rotation curve so flat in massive galaxies?

Uniformity

• (Almost) constant DM halo surface density

Reflection of the halo concentration-mass relation in ACDM/ASIDM See also Lin, Loeb (2015)

Uniformity 6 ho_0 and ho_0 vary individually, but not $ho_0 r_0$ log $\rho_0 r_0 (M_\odot pc^{-2})$ 4 10⁶ $\rho(M_{sun}/kpc^3)$ r₀ 10⁵ 10⁴ 2 1000 0.1 10 100 1 R (kpc) $\rho(r_0) = \rho_0/2$ 0 -10 -15 -20 M_B Donato+(2009) $\rho(r) = \frac{\rho_0}{1 + (r/r_0)^2}$ Kormendy, Freeman (2004)

More Galaxies...

120 spiral galaxies with high-quality data

with Kaplinghat, Kwa, Ren (in prep)

More Galaxies...

- ~114/120 galaxies can be fitted within 2σ range of the halo concentrationmass relation predicted in ΛCDM cosmology (from Dutton, Maccio, 2014)
- The SIDM fits reproduce the Tully-Fisher relation

Radial Acceleration Relation

McGaugh, Lelli, Schombert (2016)

With Kaplinghat, Kwa, Ren (in prep)

The same SPARC data set

Simulations

Controlled N-body simulations: with Creasey, Sameie, Sales, Vogelsberger, Zavala (2016)

Strong Feedback vs. SIDM

SIDM

NIHAO simulations strong feedback

Santos-Santos et al. (2017)

with Kaplinghat, Kwa, Ren (in prep)

SIDM with Strong Feedback

- The SIDM distribution is sensitive to the baryon distribution
- But, it is not sensitive to the formation history

Density Cores in Galaxy Clusters

Newman et al. (2013)

Clusters: $M_{halo} \sim 10^{14} - 10^{15} M_{\odot}$

Galaxies: $M_{halo} \sim 10^9 - 10^{12} M_{\odot}$

with Kaplinghat, Tulin (2015)

SIDM from Dwarfs to Clusters

- Consider 5 THINGS dwarfs (red), 7 LSBs (blue), 6 galaxy clusters (green)
- 8 simulated halos with $\sigma/m=1 \text{ cm}^2/\text{g}$ (gray) for calibration

DM halos as particle colliders

Measuring Dark Matter Mass

Self-scattering kinematics determines SIDM mass

Particle Physics of SIDM

• Familiar examples in the visible sector

Small-Scale Issues

• Crisis on small scales: galactic scales, <10-100 kpc

Core vs. Cusp Diversity Missing Satellites Too-Big-To-Fail

Missing Satellites & Too-Big-To-Fail

TBTF in the field: Zavala (2009), Ferrero et al. (2012), Papastergis et al. (2014), Klypin et al. (2015)

Subhalos in SIDM

Vogelsberger, Zavala, Loeb (2010)

DM self-scattering itself does not reduce the number of massive subhalos significantly for $\sigma/m_X \sim 1 \text{ cm}^2/\text{g}$

SIDM Solution to TBTF

Vogelsberger, Zavala, Loeb (2012)

DM self-interactions reduce the total DM mass in the central regions See Mauro Valli's talk in this session

Dark Acoustic Oscillation

• Roles of dark radiation, damped SIDM power spectrum

It may provide a mechanism to solve the MS problem.

Boehm, Fayet, Schaeffer (2000); Boehm, Riazuelo, Hansen, Schaeffer (2002);

van Den Aarssen, Bringmann, Pfrommer (2012); Cyr-Racine et al. (2015)...

The ETHOS collaboration (2015)

• Such coupling is naturally expected in SIDM

SIDM: m_{ϕ} ~10 MeV, T_{kd} ~1 keV; CDM (WIMP): m_{ϕ} ~1 TeV, T_{kd} ~30 MeV

Damped Power Spectrum

See also Boehm et al., (2014), Schewtschenko et al. (2015)

- The combined effect due to DM self-scattering and damping can be important
- Damping itself could be dominant in solving the TBTF problem
- The damping effect creates large scatter in the central density, favored by the observations

A Unified Model

 $\sigma/m_X \sim 2 \text{ cm}^2/\text{g} \text{ (dwarfs), 0.1 cm}^2/\text{g} \text{ (clusters)}$

For given m_X , we can fix g_X and m_{φ} ,

With Huo, Kaplinghat (in prep)

Summary

- It is time to think about new approaches to the dark matter problem
- SIDM is a compelling alternative to CDM
- It explains the diverse rotation curves of spiral galaxies
- It has other novel features: damped power spectrum, addressing MS and TBTF problems

We will hear more in this workshop

