

Annalisa Pillepich (MPIA) Dylan Nelson (MPA)

Federico Marinacci (MIT)

three boxes with different primary science focus

• in total ~200 million CPUh

Arepo Galaxy Formation Models: Illustris, IllustrisTNG, Auriga, Hestia

Illustris (temperature)

IllustrisTNG (temperature)

redshift : 3.94

Time since the Big Bang: 1.6 billion years

Mark Vogelsberger (MIT)

Springel+ w/ MV 2017

LCDM clustering

Springel+ w/ MV 2017

LCDM clustering

LCDM metals in clusters

MV+ 2017

CDM Issues: Too-Big-To-Fail Problem

Going beyond CDM: Many Possibilities

Warm Dark Matter?

Self-Interacting Dark Matter?

Fuzzy Dark Matter?

...?

WDM Simulations

a warm dark matter halo: suppression of substructure

Simulating SIDM

$$\frac{\sigma_T}{\sigma_T^{\text{max}}} \approx \begin{cases} \frac{4\pi}{22.7} \, \beta^2 \ln \left(1 + \beta^{-1}\right), & \beta < 0.1 \\ \frac{8\pi}{22.7} \, \beta^2 \, \left(1 + 1.5\beta^{1.65}\right)^{-1}, & 0.1 < \beta < 10^3 \\ \frac{\pi}{22.7} \, \left(\ln \beta + 1 - \frac{1}{2} \ln^{-1} \beta\right)^2, & \beta > 10^3, \end{cases}$$

$$\beta = \pi v_{\text{max}}^2 / v^2$$

$$N = 10^6$$
 epsilon = 0.006 x a

$$P_{ij} = \frac{m_i}{m_\chi} W(r_{ij}, h_i) \, \sigma_T(v_{ij}) v_{ij} \, \Delta t_i$$

Simulating SIDM

The Outcome of Cosmological SIDM Simulations

based	on Aqu	arius	ICs
-------	--------	-------	-----

Name	Туре	$\sigma_T^{\mathrm{max}}/m_\chi[\mathrm{cm}^2\mathrm{g}^{-1}]$	$v_{\rm max} [{\rm km s^{-1}}]$
RefP0	CDM	/	/
RefP1	SIDM (ruled out)	10	/
RefP2	vdSIDM (allowed)	3.5	30
RefP3	vdSIDM (allowed)	35	10

$$\frac{\sigma_T}{\sigma_T^{\text{max}}} \approx \begin{cases} \frac{4\pi}{22.7} \, \beta^2 \ln \left(1 + \beta^{-1}\right), & \beta < 0.1 \\ \frac{8\pi}{22.7} \, \beta^2 \, \left(1 + 1.5\beta^{1.65}\right)^{-1}, & 0.1 < \beta < 10^3 \\ \frac{\pi}{22.7} \, \left(\ln \beta + 1 - \frac{1}{2} \ln^{-1} \beta\right)^2, & \beta > 10^3 \end{cases}$$

impact of SIDM on dark matter density field of MW-like halos

$$M = 4.9 \times 10^4 M_{sun}$$

epsilon = 120pc

Impact on the Main Halo DM Density Profile

impact of SIDM on main halo density profile → core formation

core formation: larger cores for larger cross sections

Number of Scattering

typically only a few scattering events per Hubble time are sufficient

Impact on Subhalo Abundance

viable models have no significant impact on subhalo abundance

Impact on Subhalo Density Profiles

core formation in subhalos: changes circular velocity profile

this addresses the TBTF problem since it also changes the circular velocity profiles

Circular Velocity Curves

'solving' the TBTF problem with SIDM

Circular Velocity Curves – Numerical Convergence

easier to achieve convergence for SIDM models

Self-Interacting Dark Matter

ETHOS – Effective Theory of Structure Formation: Ingredients

self-interaction cross sections:

DM interactions with itself in late Universe

MV+ 2016 (first ETHOS simulations)

Cyr-Racine+ w/ MV 2016 (ETHOS theory foundations)

initial power spectra: dark acoustic oscillations due to DM interactions with relativistic particles in early Universe

Large Scale Statistics

impact on halo mass function due to transfer function cutoff

MV+ 2016

Milky Way-like DM Halo

ETHOS: A tuned Model

ETHOS: Damping vs. SIDM

disentangling the impact of SIDM and power spectrum modifications

self-interactions do not change the subhalo abundance

MV+ 2016

Halo Mass Function and High Redshift Universe

impact on halo mass function due to reduction of power at small scales

late time self-interactions typically do not affect the halo abundance

Lovell, Zavala, MV+ in prep

particles

MV, Zavala+ in prep

larger cores for inelastic models

Milky Way-like halo

MV, Zavala+ in prep

Ultralight Axions - BECDM

Summary

CDM cosmological hydro simulations:

- reproduce many observed properties of the galaxy population
- reached a dynamic range to simultaneously simulate the dwarf and the cluster scale
- still depend on rather crude models for various physical processes (e.g., AGN feedback)

Self-Interacting Dark Matter:

- provides a promising alternative to CDM to alleviate small-scale CDM problems
- velocity-dependent cross sections avoid cluster-scale constraints
- more general models also consider modifications of initial power spectra leading to other interesting effects
- inelastic SIDM models