

Is there collectivity in small systems? Copenhagen interpretation @ Workshop on Collectivity in Small Collision Systems

And what about parton energy loss?

C.Loizides (LBNL) 10 May 2017

2 Summary of typical HI observables

CL., arXiv:1602.09138

Observable or effect	PbPb	pPb (at high mult.)	pp (at high mult.)	Refs.
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes	[37-42]
Intermed. $p_{\rm T}$ ("recombination")	yes	yes	yes	[41-47]
Particle ratios	GC level	GC level except Ω	GC level except Ω	[48-51]
Statistical model	$\gamma_s^{\rm GC} = 1,1030\%$	$\gamma_s^{ m GC} \approx 1,20-40\%$	$\gamma_s^{\rm C} < 1, 20-40\%^2$	[52]
HBT radii ($R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}})$)	$R_{\rm out}/R_{\rm side} \approx 1^{-3}$	$R_{\rm out}/R_{\rm side} \stackrel{<}{_\sim} 1$	$R_{\rm out}/R_{\rm side} \stackrel{<}{_\sim} 1$	[53-59]
Azimuthal anisotropy (v_n)	$v_1 - v_7$	$v_1 - v_5$	v_2, v_3	[25-27]
(from two part. correlations)				[60-67]
Characteristic mass dependence	$v_2, v_3 $ ⁴	v_2, v_3	v ₂	[67-73]
Directed flow (from spectators)	yes	no	no	[74]
Higher order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	"4 ≈ 6" ⁵	[28, 29, 67]
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics		[75-83]
Weak η dependence	yes	yes	not measured	[83-90]
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured	[91]
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured	[92]
Event plane and v_n correlations	yes	not measured	not measured	[93-95]
Direct photons at low $p_{\rm T}$	yes	not measured	not measured ⁶	[96]
Jet quenching	yes	not observed ⁷	not measured ⁸	[97-105]
Heavy flavor anisotropy	yes	hint ⁹	not measured	[106-109]
Quarkonia	$J/\psi \uparrow, \Upsilon \downarrow$	suppressed	not measured ⁸	[110-116]

Observations qualitatively similar across systems for similar multiplicity, and can be reconciled by postulating a sQGP, even in high mult pp collisions. But no direct evidence for parton energy loss, which - even if tiny - should be there!

3 Predictions from models

Calculations expect sizable (10-20%) suppression for "central" pPb and pp

No modification (at low p_{τ} , ie. x<0.1) ZN on Pb-side (a.u.) ALICE p-Pb Vsiai = 5.02 TeV Data Events (SNM-Glaube (with selection on neutron ZDC $= \frac{1}{N_{\rm coll}} \frac{\mathrm{d}N_{\rm pPb}/\mathrm{d}p_{\rm T}}{\mathrm{d}N/\mathrm{d}p_{\rm T}}$ $Q_{\rm pPb}^{ZN}$ on the Pb-side and Ncoll from multiplicity assuming the 10³ 40-60 % wounded nucleon model) 60-80 % 80-100 10² 40 60 80 100 E_{7N} (TeV) ALICE p-Pb√s_{NN} = 5.02 TeV PRC 91 (2015) 064905 Q_{pPb} p_ interval (GeV/c) ALICE p-Pb $s_{NN} = 5.02 \text{ TeV}$ • $20 \le p_{-} < 30$ FastJet anti- $k_{\rm T}$ jets, $|\eta_{\rm lab}| < 0.5$ <Ncoll>~12**4**0 $\leq p_{\tau} < 50$ 1.6 - Reference: Scaled pp jets 7 TeV **1** 70 $\leq p_{\tau} < 80$ PLB 749 (2015) 68 1.4 1.2 0.8 0.8 0.6 Nhigh-pT ZN + N^{mult}_{coll} NPb-side Centrality 12.5 13.3 0.6 10 11.6 12.1 12.3 0.4 20 10 -11.0 11.3 11.4 0.4 20 -40 9.56 9.73 9.60 ZN + N^{Pb-side} 60 7.08 6.81 6.74 0.2 60 -80 4.30 4.05 4.00 0.2 Resolution parameter R = 0.480 - 100 2.11 2.03 2.06 0 0 20 40 80 60 100 0 40-60% 60-80% 0-20% 20-40% 80-100% Centrality (ZNA) Centrality (%)

No suppression observed

5 Hadron-jet coincidence measurement

No suppression (precision will improve with large 2015 pPb data!)

6 Multiplicity based selection

Huge effect

(but QpPb not necessarily one in absence of nuclear modification!)

7 Multiplicity based selection (2)

- Several biases are relevant
 - Multiplicity bias
 - Bias on the sources contributing to particle production
 - Jet veto bias
 - Auto-correlation between high $p_{\scriptscriptstyle T}$ particle and soft multiplicity
 - Geometrical bias
 - Average NN impact parameter increases for peripheral collisions (explicitly discussed in J.Jia, PLB 681 (2009) 320)

10

 10^{2}

CL1

10

8 Multiple parton interactions (MPI) Skands, arXiv:1207.2389

- Naive factorization $\langle n_{2\to 2} \rangle = \frac{\sigma_{2\to 2}}{\sigma_{\text{tot}}} >1$ at pert. scale $P_n = \frac{\langle n_{2\to 2} \rangle^n}{n!} \exp\left(-\langle n_{2\to 2} \rangle\right)$
- Realistic models (eg. PYTHIA)
 - Color screening to regularize hard cross section at low p_T
 - Cut-off at high n because of energy conservation
 - Coherence between scatters
 - Impact parameter dependence $n_{\rm hard}(b) = \sigma_{\rm hard} T_{\rm p}(b)$
 - Leads to a correlation between hard and soft particles as in AA

Guidance from HIJING

PRD44 (1991) 3501

Inelasticic NN collision at b_{NN} given as

 $\sigma_{\rm inel} \propto 1 - e^{(\sigma_{\rm soft} + \sigma_{\rm hard})T_{\rm N}(b_{\rm NN})}$

with nuclear overlap (Eikonal function)

 $T_{\rm N} \propto (\xi \mu)^3 K_3(\xi \mu)$ with $\xi = b_{\rm NN}/b_0$

Number of hard (mpi) collisions given by

 $P(n_{\text{hard}}) = \frac{\langle n_{\text{hard}} \rangle^{n_{\text{hard}}}}{n_{\text{hard}}!} e^{-\langle n_{\text{hard}} \rangle}$

with

 $\langle n_{\rm hard} \rangle = \sigma_{\rm hard} T_{\rm N}$

10 Demonstration using Glauber+Pythia

G-PYTHIA:

- ¹ For a given Glauber event, simulate Ncoll many PYTHIA pp events
- Order events according to resulting total multiplicity (in given phase space)

Suggests, at high p_T $\langle Q_{\rm pPb} \rangle \propto \frac{N_{\rm hard}}{N_{\rm coll} \langle N_{\rm hard}^{\rm pp} \rangle}$

11 What about (peripheral) AA?

13 Model comparison

Hijing:

- No quenching, no shadowing, but ad-hoc momentum conservation and multiple scattering
- Does not give $R_{AA} \rightarrow 1$ at high p_T for central collisions

HG-Pythia:

- Use as HIJING nhard distribution as input but just superimpose PYTHIA (Perugia 2011) events
- Does not reproduce multiplicity

Results obtained using event ordering (slicing) for forward multiplicity (2.5<|η|<5)

Multiplicity bias can cause the apparent suppression!

14 Multiplicity and geometry bias effect

Peripheral collisions strongly affected by multiplicity bias

15 Implications

- Toy model study suggests that apparent suppression in very (80++%) peripheral AA originates from bias
 - Relevant for all hard probes
 - Relevant at all energies (BES)
 - Beware use of R_{CP}

Multiplicity/geometry bias

16 Parton quenching calculation (~2004)

17 Implications

- Toy model study suggests that apparent suppression in very (80++%) peripheral AA originates from bias
 - Relevant for all hard probes
 - Relevant at all energies (BES)
 - And RCP not pp!
- Expect parton energy loss to be "continuous"
 - Natural explanation that it turns off both at multiplicities of peripheral AA (and pPb)
 - ie. be similar to that of pion gas or cold nuclear matter

18 What next ...

- Measure v_N in pPb (and very peripheral PbPb) to higher p_T
 - Would be good to get predictions at ~10-20 GeV from parton energy loss
- Semi-inclusive measurements
 - T_{AB} cancels
- Candle (cross section) measurement in peripheral AA
 - Difficult (needs "white" probe)
 - Hybrid centrality method?
 - Geometry bias can probably not be avoided

19 Extra

20 J/ Ψ and Ψ (2S) suppression

ALICE, JHEP 06 (2016) 50

- $J/\psi \rightarrow \mu\mu$: Multiplicity dependent suppression in p-going direction, and no suppression in Pb-going direction
 - Consistent with shadowing
- $\psi(2S) \rightarrow \mu\mu$: Multiplicity dependent suppression in both directions
 - Needs additional effect (Final state?)

21 Energy scan

 \mathbf{R}_{CP}

22 Impact parameter (geometrical) bias

J.Jia, PLB 681 (2009) 320

$$T_{AB}(\vec{b}_{AB}) = \int d\vec{b}_A d\vec{b}_B \ T_A(\vec{b}_A) T_B(\vec{b}_B) t(\vec{b}_{AB} - \vec{b}_A + \vec{b}_B)$$

= $\int d\vec{s} d\vec{b}_{nn} \ T_A(\vec{s}) T_B(\vec{s} - \vec{b}_{AB} + \vec{b}_{nn}) t(\vec{b}_{nn}).$

 $N_{\rm coll} = T_{\rm AB} \, \sigma_{\rm NN}$

Including a impact parameter dependent nucleon-nucleon overlap function can lead to 20% variation of Ncoll for peripheral collisions

Un-understood features in central PbPb related maybe to adhoc-momentum conservation And multiple scattering. Does not give RAA \rightarrow 1 at high p₊

24 HG-Pythia multiplicity dependence

By construction, does not well scale with Npart, but rather with Nhard (or Ncoll)

25 Effects at large p_T (x>0.1)

26 Centrality from HYBRID method

 Assume ZN is bias free + define centrality classes
 Construct similar model as for the Glauber fits

Resulting values within at most 10%

ALICE, PRC 91 (2015) 064905

27 Results using the hybrid method

ALICE, PRC 91 (2015) 064905

28 Multiplicity vs ZN selection

ALICE, PRC 91 (2015) 064905

29 Scaling of hard probes with multiplicity

30 Correlation between ZNA and multiplicity

10³

10²

10

31 Elliptic flow and high pT suppression in AA

Fig. 42. Left: The 2-D $\Delta \eta - \Delta \phi$ correlation function for high- $p_{\rm T}$ (> 20 GeV/c) trigger particles in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. Right: The v_2 values at high $p_{\rm T}$ (~ 15 GeV/c) versus low $p_{\rm T}$ (~ 1 GeV/c) for different centralities in Pb-Pb collisions.²⁵⁰

Wei, Dusling, Schenke, IJMP E25 (2016) 01, 1630002

32

ATLAS, PRC 90 (2014) 044906

