

"Long-range collectivity" in small systems

Jiangyong Jia, BNL and Stony Brook University

- What is collectivity?
- How to distinguish initial vs final state effects ?
- How are cumulants related to collectivity?

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

May 8–11, 2017

Long-range collectivity in different systems

Long-range correlation in momentum space comes

- directly from early time t~0 (CGC)
- or it is a final state response to spatial fluctuation at t=0 (hydro).
 What is the timescale for emergence of collectivity?

Examples of initial vs final state scenarios

CGC

Domain of color fields of size $1/Q_s$, each produce multi-particles correlated across full η . Uncorr. between domains, strong fluct. in Q_s More domains, smaller v_n , more Q_s fluct, stronger v_n

Well motivated model framework, lack systematic treatment

Hydro

Hot spots (domains) in transverse plane e.g IPplasma, boost-invariant geometry shape

Expansion and interaction of hot spots generate collectivity

 v_n depends on distribution of hot spots (ϵ_n) and transport properties.

Ongoing debate whether hydro is applicable in small systems

Features of collectivity in HM pPb

Features of collectivity in HM pp

Non-flow can generate long-range (away-jet) or multi-particle correlation (fragmentation) but not both

Collectivity must mean both

Azimuthal correlation from collectivity

They give the same flow coefficient c_n {4} and v_n {4}, although clearly the first case is non-flow and the second case would be classified as flow

Azimuthal correlation from collectivity

They give the same flow coefficient c_n {4} and v_n {4}, although clearly the first case is non-flow and the second case would be classified as flow

Azumuthal corr. alone can't distinguish flow & non-flow.

Long-range collectivity via subevent cumulants

19

pPb: methods consistent for N_{ch} >100, but split below that pp: Only subevent method gives reliable negative c_2 {4} in broad range of N_{ch}

Sign-change of c_2 {4}

• Most positive $c_2{4}$ in standard cumulants are jets and dijets.

• Remaining positive $c_2{4}$ in 3-subevent due to residual dijets.

Glasma diagram contribution is small?

\sqrt{s} dependence of $c_2{4}$ at RHIC

- Surprising features: v_2 {4} larger at lower \sqrt{s} , reaching v_2 {2}.
- Difficult to describe in both CGC and hydro
- Important to understand non-flow in standard cumulant method

Does collectivity turn off at low N_{ch}?

peripheral subtraction including peripheral pedestal (assuming the peripheral also has flow) →so called template fit peripheral subtraction not including peripheral pedestal (assuming the peripheral has no flow) \rightarrow so call peripheral sub.

Mingliang Zhou's talk for more detail

Does collectivity turn off at low N_{ch}?

- v₂{4} from 3-subevent show no dependence on N_{ch}.
 Why v₂{2} _{peri. sub} ≈ v₂{4} in pp? surprising because:
 v_n{2}⁴ v_n{4}⁴ = ⟨v_n⁴⟩ ⟨v_n²⟩² = ⟨(v_n² ⟨v_n²⟩)²⟩ ≥ 0
- v₂{4} also show No hint of collectivity turning-off at low N_{ch}! Challenge both CGC and standard hydro?

Role of initial geometry is very different

From Schenke, Schlichting, Venugopalan,

The orientation of collectivity is unrelated to initial eccentricity →Very different from hydrodynamics

Role of initial geometry is very different

From Schenke, Schlichting, Venugopalan,

The orientation of collectivity is unrelated to initial eccentricity →Very different from hydrodynamics Expect contribution diminish as system size is increased

Presence of both initial and final state scenarios?

16

Phases of collectivity from CGC and hydro are unrelated \rightarrow a minimum of total v_n at certain system size?

System size dependence

Clear dependence on collision systems but ~no dependence on \sqrt{s} v_2^{pp} (high-mul) $\leq v_2^{pPb}$ (low-mul)!

CGC Unclear if the pp/pPb hierarchy is expected.

HydroInterplay between viscous damping and initial ε_nPb: may seen an average geometry effectpp: geometry maybe poorly correlated with N_{ch}.

Kevin Welsh, Jordan Singer, and Ulrich Heinz 1605.09418

Geometry scan at RHIC

 $v_2^{pAu} < v_2^{dAu} \le v_2^{HeAu}$ $v_3^{dAu} < v_3^{HeAu}$

Hierarchy compatible with initial geometry + final state effects Look forward to the CGC predictions

Original of high- $p_T v_2$?

Ridge seen directly at 10 GeV or 5% v₂ in pPb

→final state effects, e.g. jet quenching (better observable than R_{AA})? →initial state effects, rare Q_s fluctuation?

Outlook: more precision and higher p_T with 8 TeV pPb data

Symmetric cumulants

- Influence of non-flow need to be taken out, but see anti-correlation between v₂ v₃ and correlation between v₂ v₄.
- Naturally understood in hydrodynamics
 - v_2v_3 reflects $\varepsilon_2\varepsilon_3$ correlation, v_2v_4 correlation reflects mode-mixing effects
- In principle, some processes in CGC can also produce this <u>1705.00745</u>

Summary of collectivity in small system

• Collectivity associated with ridge must involve many particles in multiple η ranges \rightarrow subevent methods

Challenge for both initial & final state scenarios?

- LHC v_2 associated with ridge does not turn off at low N_{ch} .
- RHIC v_2 {4} increases and approaches v_2 {2} at lower \sqrt{s}

Challenge for initial state only scenarios?

- LHC $v_2^{pp} < v_2^{pPb}$ in all N_{ch} and all \sqrt{s} .
- LHC $c_2{4} < 0$ down to very low N_{ch} and more negative at higher p_T .
- RHIC geometry scan suggest ordering of v_n follows that of ε_n .
- LHC 5% v_2 at $p_T \sim 10$ GeV.

Coexistence of initial state & final state scenarios?

Key issue: How to constrain timescales for emergence of collectivity? the role of CGC, preflow and hydro?

How are cumulants related to collectivity? — the role of flow, non-flow and multiplicity fluctuation

1701.03830, 1412.4759

Role of flow & nonflow in multi-particle cumulant²³

- Flow vector for event with M particles: $\mathbf{q}_n \equiv \frac{\sum_i e^{in\phi_i}}{M} = q_n e^{in\Psi_n}$
- Contains contribution from flow and non-flow $\mathbf{q}_n = \mathbf{v}_n + \mathbf{s}_n$
- Cumulant is **additive** for convolution: (v and s are independent)

 $p(\mathbf{q}_n) = p(\mathbf{v}_n) \otimes p(\mathbf{s}_n) \implies c_n\{2k\} = c_n\{2k, flow\} + c_n\{2k, non-flow\}$

• i.e. for four-particle cumulants:

$$c_n\{4\} = \frac{\langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2}{c_n\{4, \text{flow}\}} + \frac{\langle s_n^4 \rangle - 2 \langle s_n^2 \rangle^2}{c_n\{4, \text{non-flow}\}}$$

The sign of $c_n{2k}$ depends on the nature of the p(flow) and p(non-flow)

Properties of flow cumulants

• Not additive due to non-linear term: $c_n \{4\}_{ev1+ev2} \neq \frac{c_n \{4\}_{ev1} + c_n \{4\}_{ev2}}{2}$ $c_n \{4\} = \langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2$

• Cumulants not very sensitive to $p(v_n)$ shape beyond 4th-order!

Nature of collectivity fluctuations?

- Arguments based on initial eccentricity fluctuations
 - A+A system: Bessel-Gaussian, confirmed by $p(v_n)$ obtained from unfolding \checkmark
 - Small system: power distribution based on independent source model ?

$$p(v_n) = 2\frac{\alpha}{\kappa} \frac{v_n}{\kappa} (1 - (\frac{v_n}{\kappa})^2)^{\alpha - 1} \quad 2\alpha = N_s - 1 \qquad \text{PRL112,082301(2014)}$$

We can't know $p(v_n)$ given current precision of $v_2{2k}$! Important to directly measure $p(v_n)$

"wrong" sign of $c_n \{2k\}$?

- In principle, c₂{2k} with "correct" sign & v₂{4}≈v₂{6}≈v₂{8}
 ≈v₂{∞} neither necessary nor sufficient condition for collectivity.
- The sign & hierarchy controlled by shape of $p(v_n)$. More examples given
 - Mixing 1/3 events with flow and 2/3 with zero flow in 1412.4759

$$p(v_n) = \frac{1}{3}\delta(v_n - v_0) + \frac{2}{3}\delta(v_n)$$

Cumulants have "wrong" sign, despite only flow is present

$$c_n\{4\} = \frac{1}{9}v_0^4, \ c_n\{6\} = -\frac{2}{9}v_0^6, \ c_n\{8\} = \frac{71}{9}v_0^8$$

 Same discussion applies for non-flow as well: the sign of c_n{4,non-flow} depends on EbyE fluctuation of non-flow p(s_n)

$$c_n\{4\} = \langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2 + \langle s_n^4 \rangle - 2 \langle s_n^2 \rangle^2$$

Understanding EbyE **non-flow fluctuation** is important for understanding flow fluctuation in small system

How cumulants depends on p(v)?

- Convergence of $\lim_{k \to \infty} v\{2k\}$ requires $\langle J_0(2vz) \rangle = \int J_0(2vz) p(v) dv$ has 0 in complex plane, i.e. LYZ method.
- p(v) from initial state color fluc is strongly non-Gaussian

$$c_{2}\{2\} = \frac{1}{N_{D}} \left(\mathcal{A}^{2} + \frac{1}{4(N_{c}^{2} - 1)} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

non-linear/non-Gaussian effects
Glasma diagram

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{3} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{3} - 1)^{3}} \right)$$

$$c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}$$

at a di a manala a a mlar

Map final results to a common centrality, e.g. $<N_{ch}>$ for $p_T>0.4$ GeV

Dependence on N_{ch}^{Sel} in PYTHIA

Dependence on N_{ch}^{Sel} in PYTHIA

Standard v.s. Subevent cumulants

3 subevent cumulant is a more reliable method in small system

Summary of cumulants in small system

- Current precision of c_n{2k} can't probe details of p(v_n) shape, other than the mean and standard deviation.
- $c_n\{2k\}$ with "correct" sign & $v_n\{4\}\approx v_n\{6\}\approx v_n\{8\}\approx v_n\{\infty\}$ neither necessary nor sufficient condition for collectivity.
- In small systems, non-collective sources from dijet dominates the statistical properties of two- or multi-particle correlations
 - Reflected by strong sensitivity to multiplicity class definition and multiplicity bin-width.
- Cumulants based on subevents suppress such non-collective sources