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Let’s address this first!
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What is collective and what is not?

Collectivity can be defined to arbitrarily low Ntrk (≥2)

Event 1 Event 2 Event 3 Event 4
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What is collective and what is not?

Collectivity can be defined to arbitrarily low Ntrk (≥2)

Event 1 Event 2 Event 3 Event 4

but indistinguishable from “trivial” pQCD processes
Not very interesting!
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What is collective and what is not?

More interested in multi-particle collectivity:
“High" Multiplicity >> cluster size

Collective Non-collective

v2{2} ≈	v2{4} ≈	v2{6} ≈	v2{8}
(c2{2}>0, c2{4}<0, c2{6}>0,c2{8}<0)

A strong evidence
for collectivity

Cumulants designed to suppress few-body correlations
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More interested in multi-particle collectivity:
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Collective Non-collective

“Right” sign and mag. of c2{m} →	likely collective
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Collectivity seen in “HM” small systems
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More jets?

very hard jets (>10 GeV): rare
semi-hard (< a few GeV): interact and flow

at high multiplicity
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Collectivity seen in “HM” small systems

Mass-proportional splitting
Radial collective emission of a moving source

CMS  = 7 TeV)s (-16.2 pb  = 5.02 TeV)NNs (-135 nb  = 2.76 TeV)NNs (-1bµ2.3 

trk
offlineN

10 210

 (G
eV

)
〉 T

KE〈

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
pp

trk
offlineN

10 210

 (G
eV

)
〉 T

KE〈

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
pPb

−Ξ

Λ

s
0K

trk
offlineN

10 210

 (G
eV

)
〉 T

KE〈

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
PbPb | < 1

cm
|y

CMS  = 7 TeV)s (-16.2 pb  = 5.02 TeV)NNs (-135 nb  = 2.76 TeV)NNs (-1bµ2.3 

trk
offlineN

10 210

 (G
eV

)
〉 T

KE〈

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
pp

trk
offlineN

10 210

 (G
eV

)
〉 T

KE〈

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
pPb

−Ξ

Λ

s
0K

trk
offlineN

10 210

 (G
eV

)
〉 T

KE〈

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
PbPb | < 1

cm
|y

PLB 768 (2017) 103

PLB 765 (2017) 193

More evidence of collectivity in pp …
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Ample experimental data consistent with novel 
collective long-range correlations in small systems
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Have we created a tiny QGP fluid?

Pressure gradient
(final-state interactions)

Initial spatial εs at τ=0

“Hydrodynamic” scenario

+
Feasibly, and it is the
accepted paradigm in AA
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Have we created a tiny QGP fluid?

Pressure gradient
(final-state interactions)

Initial spatial εs at τ=0

“CGC” scenario

by initial interactions
Initial momenta εp at τ≤0

But not necessarily,

“Hydrodynamic” scenario
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FIG. 6. Two, four, six and eight particle Fourier harmonics
for coherent multiple scattering o↵ Abelian fields plotted as
a function of Q2

s,T

.

path ordered exponentials [42]. The product of dipoles in
Eq.(1) is significantly simpler to compute [23], enabling
one to extract v2{6} and v2{8} from the corresponding
cumulants [30, 43]. Our results, shown in Fig.(6), demon-
strate that v2{2} > v2{4} ⇡ v2{6} ⇡ v2{8}, as also seen
in the LHC data on multiparticle harmonics [43].

The fact that this behavior is reproduced in a simple
initial state model is a proof of principle that it is not
unique to interpretations of collectivity arising from the
hydrodynamic response of the system to the n-th mo-
ments of m particle spatial eccentricities [44, 45]. For a
recent review on hydrodynamic collectivity and relevant
references, see [46]. Our results do not necessarily mean
that an initial state interpretation of the data is favored.
We instead conclude that the v

n

{m} measurements alone
are thus far insu�cient to unambiguously distinguish be-
tween initial and final state approaches.

While it is remarkable that our results qualitatively ex-
plain observed multiparticle correlations, it is also clear
that the model is missing key features of QCD dynamics
that should be important at high energies. In this regard,
the initial state framework in [31, 47] includes a more sys-
tematic treatment, albeit at an enormously greater com-
putational e↵ort. Nevertheless, since multiparticle cor-
relations display similar features in light-heavy ion colli-
sions spanning two orders of magnitude in center of mass
energies, where QCD degrees of freedom evolve signifi-
cantly, it is worth thinking further why the simple model
we have worked out appears to capture the underlying
dynamics.
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Why we aren’t debating “Hydro” vs “CGC” in AA?

What does it still take to reach a consensus on 
the origin of collectivity in small systems (pp/pA)?

Have we created a tiny QGP fluid?
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“Perfect” fluid paradigm in AA
Ø Geometry (εs) at work!

Centrality dependence
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“Perfect” fluid paradigm in AA
Ø Geometry (εs) at work!

Centrality dependence

scale 
by 𝜀

CuCu vs AuAu scaling

Indirectly, jet quenching → opaque, strong rescattering
Ø Pressure driven

even for A1(A2) down to 2

Both not fully established in small systems yet
11
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AMPT gets v2 in a “dilute” limit: how about size dep. of “radial flow”?12
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Connection to geometry in pp/pA?

Ø Large uncertainty in modeling of IS in pp/pA
Ø Hard to vary in a controlled way 
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Universal features of fluctuation-driven 𝜀𝑛
Yan, Ollitrault, PRL 112, 082301 (2014)

Connection to geometry in pp/pA?

2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.2  0.4  0.6  0.8  1

N e
ve

nt
s

ε2

p-Pb: Np=15
ε2{2}=0.388

Bessel-Gaussian
Gaussian

Power

FIG. 1. (Color online) Histogram of the distribution of
ε2 obtained in a Monte-Carlo Glauber simulation of a p-Pb
collision at LHC, and fits using Eqs. (2)-(4).

around each participant nucleon with a normalization
that fluctuates [28]. These fluctuations, which increase
anisotropies [29], are modeled as in Ref. [20]. We have se-
lected events with number of participants 14 ≤ N ≤ 16,
corresponding to typical values in a central p-Pb colli-
sion.
We now compare different parameterizations of this

distribution, which we use to fit our numerical results.
The first is an isotropic two-dimensional Gaussian (we
drop the subscript n for simplicity):

P (ε) =
2ε

σ2
exp

(

−
ε2

σ2

)

, (2)

where ε ≡
√

ε2x + ε2y and the distribution is normalized:
∫∞

0 P (ε)dε = 1. This form is motivated by the central
limit theorem, assuming that the eccentricity solely orig-
inates from event-by-event fluctuations, and neglecting
fluctuations in the denominator. Note that this distribu-
tion does not strictly satisfy the constraint ε < 1, which
follows from the definition (1). When fitting our Monte-
Carlo results, we have therefore multiplied Eq. (2) by a
constant to ensure normalization between 0 and 1. The
rms ε has been fitted to that of the Monte-Carlo simu-
lation. Fig. 1 shows that Eq. (2) gives a reasonable ap-
proximation to our Monte-Carlo results, but not a good
fit.
Bzdak et al. [20] have proposed to replace Eq. (2) by

a “Bessel-Gaussian”:

P (ε) =
2ε

σ2
I0

(

2εε̄

σ2

)

exp

(

−
ε2 + ε̄2

σ2

)

. (3)

This parameterization introduces an additional free pa-

rameter ε̄, corresponding to the mean eccentricity in the
reaction plane in nucleus-nucleus collisions [19]. It re-
duces to (2) if ε̄ = 0. A nonzero value of ε̄ is how-
ever difficult to justify for a symmetric system in which
anisotropies are solely created by fluctuations. In Fig. 1,
ε̄ and σ have been chosen so that the first even moments
⟨ε2⟩ and ⟨ε4⟩ match exactly the Monte-Carlo results, as
suggested in [20]. The quality of the fit is not much
improved compared to the Gaussian distribution, even
though there is an additional free parameter. Note that
the Bessel-Gaussian, like the Gaussian, does not take into
account the constraint ε < 1.
We now introduce the one-parameter power law distri-

bution:

P (ε) = 2αε(1− ε2)α−1, (4)

where α > 0. Eq. (4) reduces to Eq. (2) for α ≫ 1,
with σ2 ≡ 1/α. The main advantage of Eq. (4) over
previous parameterizations is that the support of P (ε) is
the unit disc: it satisfies for all α > 0 the normalization
∫ 1
0 P (ε)dε = 1. In the limit α → 0+, P (ε) ≃ δ(ε− 1).
Eq. (4) is the exact [30]1 distribution of ε2 for N identi-

cal pointlike sources with a 2-dimensional isotropic Gaus-
sian distribution, with α = (N − 1)/2, if one ignores
the recentering correction. In a more realistic situation,
Eq. (4) is no longer exact. We adjust α to match the
rms ε from the Monte-Carlo calculation. Fig. 1 shows
that Eq. (4) (with α ≃ 5.64) agrees much better with
Monte-Carlo results than Gaussian and Bessel-Gaussian
distributions.

CUMULANTS

Cumulants of the distribution of ε are derived from
a generating function, which is the logarithm of the
two-dimensional Fourier transform of the distribution of
(εx, εy):

G(kx, ky) ≡ ln⟨exp(ikxεx + ikyεy)⟩, (5)

where angular brackets denote an expectation value over
the ensemble of events. If the system has azimuthal sym-
metry, by integrating over the relative azimuthal angle of
k and ε, one obtains

G(k) = ln⟨J0(kε)⟩, (6)

where k ≡
√

k2x + k2y and ε ≡
√

ε2x + ε2y. The cumu-

lant to a given order n, ε{n}, is obtained by expanding

1 See Eq. (3.10) of [30]. What is derived there is the distribution
of anisotropy in momentum space, but the algebra is identical
for the distribution of eccentricity.

𝛼 = -.
/

-1
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Predictions:
Ø Fine splitting among 
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k and ε, one obtains

G(k) = ln⟨J0(kε)⟩, (6)

where k ≡
√

k2x + k2y and ε ≡
√

ε2x + ε2y. The cumu-

lant to a given order n, ε{n}, is obtained by expanding

1 See Eq. (3.10) of [30]. What is derived there is the distribution
of anisotropy in momentum space, but the algebra is identical
for the distribution of eccentricity.
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FIG. 1. (Color online) Histogram of the distribution of
ε2 obtained in a Monte-Carlo Glauber simulation of a p-Pb
collision at LHC, and fits using Eqs. (2)-(4).

around each participant nucleon with a normalization
that fluctuates [28]. These fluctuations, which increase
anisotropies [29], are modeled as in Ref. [20]. We have se-
lected events with number of participants 14 ≤ N ≤ 16,
corresponding to typical values in a central p-Pb colli-
sion.
We now compare different parameterizations of this

distribution, which we use to fit our numerical results.
The first is an isotropic two-dimensional Gaussian (we
drop the subscript n for simplicity):

P (ε) =
2ε

σ2
exp

(

−
ε2

σ2

)

, (2)

where ε ≡
√

ε2x + ε2y and the distribution is normalized:
∫∞

0 P (ε)dε = 1. This form is motivated by the central
limit theorem, assuming that the eccentricity solely orig-
inates from event-by-event fluctuations, and neglecting
fluctuations in the denominator. Note that this distribu-
tion does not strictly satisfy the constraint ε < 1, which
follows from the definition (1). When fitting our Monte-
Carlo results, we have therefore multiplied Eq. (2) by a
constant to ensure normalization between 0 and 1. The
rms ε has been fitted to that of the Monte-Carlo simu-
lation. Fig. 1 shows that Eq. (2) gives a reasonable ap-
proximation to our Monte-Carlo results, but not a good
fit.
Bzdak et al. [20] have proposed to replace Eq. (2) by

a “Bessel-Gaussian”:

P (ε) =
2ε

σ2
I0

(

2εε̄

σ2

)

exp

(

−
ε2 + ε̄2

σ2

)

. (3)

This parameterization introduces an additional free pa-

rameter ε̄, corresponding to the mean eccentricity in the
reaction plane in nucleus-nucleus collisions [19]. It re-
duces to (2) if ε̄ = 0. A nonzero value of ε̄ is how-
ever difficult to justify for a symmetric system in which
anisotropies are solely created by fluctuations. In Fig. 1,
ε̄ and σ have been chosen so that the first even moments
⟨ε2⟩ and ⟨ε4⟩ match exactly the Monte-Carlo results, as
suggested in [20]. The quality of the fit is not much
improved compared to the Gaussian distribution, even
though there is an additional free parameter. Note that
the Bessel-Gaussian, like the Gaussian, does not take into
account the constraint ε < 1.
We now introduce the one-parameter power law distri-

bution:

P (ε) = 2αε(1− ε2)α−1, (4)

where α > 0. Eq. (4) reduces to Eq. (2) for α ≫ 1,
with σ2 ≡ 1/α. The main advantage of Eq. (4) over
previous parameterizations is that the support of P (ε) is
the unit disc: it satisfies for all α > 0 the normalization
∫ 1
0 P (ε)dε = 1. In the limit α → 0+, P (ε) ≃ δ(ε− 1).
Eq. (4) is the exact [30]1 distribution of ε2 for N identi-

cal pointlike sources with a 2-dimensional isotropic Gaus-
sian distribution, with α = (N − 1)/2, if one ignores
the recentering correction. In a more realistic situation,
Eq. (4) is no longer exact. We adjust α to match the
rms ε from the Monte-Carlo calculation. Fig. 1 shows
that Eq. (4) (with α ≃ 5.64) agrees much better with
Monte-Carlo results than Gaussian and Bessel-Gaussian
distributions.

CUMULANTS

Cumulants of the distribution of ε are derived from
a generating function, which is the logarithm of the
two-dimensional Fourier transform of the distribution of
(εx, εy):

G(kx, ky) ≡ ln⟨exp(ikxεx + ikyεy)⟩, (5)

where angular brackets denote an expectation value over
the ensemble of events. If the system has azimuthal sym-
metry, by integrating over the relative azimuthal angle of
k and ε, one obtains

G(k) = ln⟨J0(kε)⟩, (6)

where k ≡
√

k2x + k2y and ε ≡
√

ε2x + ε2y. The cumu-

lant to a given order n, ε{n}, is obtained by expanding

1 See Eq. (3.10) of [30]. What is derived there is the distribution
of anisotropy in momentum space, but the algebra is identical
for the distribution of eccentricity.
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that fluctuates [28]. These fluctuations, which increase
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lected events with number of participants 14 ≤ N ≤ 16,
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where ε ≡
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0 P (ε)dε = 1. This form is motivated by the central
limit theorem, assuming that the eccentricity solely orig-
inates from event-by-event fluctuations, and neglecting
fluctuations in the denominator. Note that this distribu-
tion does not strictly satisfy the constraint ε < 1, which
follows from the definition (1). When fitting our Monte-
Carlo results, we have therefore multiplied Eq. (2) by a
constant to ensure normalization between 0 and 1. The
rms ε has been fitted to that of the Monte-Carlo simu-
lation. Fig. 1 shows that Eq. (2) gives a reasonable ap-
proximation to our Monte-Carlo results, but not a good
fit.
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This parameterization introduces an additional free pa-

rameter ε̄, corresponding to the mean eccentricity in the
reaction plane in nucleus-nucleus collisions [19]. It re-
duces to (2) if ε̄ = 0. A nonzero value of ε̄ is how-
ever difficult to justify for a symmetric system in which
anisotropies are solely created by fluctuations. In Fig. 1,
ε̄ and σ have been chosen so that the first even moments
⟨ε2⟩ and ⟨ε4⟩ match exactly the Monte-Carlo results, as
suggested in [20]. The quality of the fit is not much
improved compared to the Gaussian distribution, even
though there is an additional free parameter. Note that
the Bessel-Gaussian, like the Gaussian, does not take into
account the constraint ε < 1.
We now introduce the one-parameter power law distri-

bution:

P (ε) = 2αε(1− ε2)α−1, (4)

where α > 0. Eq. (4) reduces to Eq. (2) for α ≫ 1,
with σ2 ≡ 1/α. The main advantage of Eq. (4) over
previous parameterizations is that the support of P (ε) is
the unit disc: it satisfies for all α > 0 the normalization
∫ 1
0 P (ε)dε = 1. In the limit α → 0+, P (ε) ≃ δ(ε− 1).
Eq. (4) is the exact [30]1 distribution of ε2 for N identi-

cal pointlike sources with a 2-dimensional isotropic Gaus-
sian distribution, with α = (N − 1)/2, if one ignores
the recentering correction. In a more realistic situation,
Eq. (4) is no longer exact. We adjust α to match the
rms ε from the Monte-Carlo calculation. Fig. 1 shows
that Eq. (4) (with α ≃ 5.64) agrees much better with
Monte-Carlo results than Gaussian and Bessel-Gaussian
distributions.

CUMULANTS

Cumulants of the distribution of ε are derived from
a generating function, which is the logarithm of the
two-dimensional Fourier transform of the distribution of
(εx, εy):

G(kx, ky) ≡ ln⟨exp(ikxεx + ikyεy)⟩, (5)

where angular brackets denote an expectation value over
the ensemble of events. If the system has azimuthal sym-
metry, by integrating over the relative azimuthal angle of
k and ε, one obtains

G(k) = ln⟨J0(kε)⟩, (6)

where k ≡
√

k2x + k2y and ε ≡
√

ε2x + ε2y. The cumu-

lant to a given order n, ε{n}, is obtained by expanding

1 See Eq. (3.10) of [30]. What is derived there is the distribution
of anisotropy in momentum space, but the algebra is identical
for the distribution of eccentricity.
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Collectivity toward low multiplicity
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Limitation of subtraction methods

Gen
trkN

0 50 100 150

∆2V

0.000

0.005

0.010  = 13 TeVspp 
PYTHIA8 TuneCUETP8M1

 < 3 GeV/c
T

0.3 < p
| > 2η∆|

Direct Fourier Decom.
Peripheral Sub.
Template-fitting

𝑽𝒏∆𝒔𝒖𝒃=𝑉@∆AB-𝛼 -CD

-ED
𝑉@∆FB

𝑌(∆𝜙)=F𝑌FB ∆𝜙 + G(1 + 2∑ 𝑽𝒏∆
𝒇𝒊𝒕cos	(𝑛∆𝜙)�

@ )

Peripheral subtraction:

Template fit:

Apply to PYTHIA8
without v2

Works equally well

20



𝑽𝒏∆𝒔𝒖𝒃=𝑉@∆AB-𝛼 -CD

-ED
𝑉@∆FB

𝑌(∆𝜙)=F𝑌FB ∆𝜙 + G(1 + 2∑ 𝑽𝒏∆
𝒇𝒊𝒕cos	(𝑛∆𝜙)�

@ )

Peripheral subtraction:

Template fit:

Adding a v2 to 𝑌(∆𝜙): 

Gen
trkN

0 50 100 150

∆2V

0.000

0.005

0.010

 = 13 TeVspp 
PYTHIA8 TuneCUETP8M1

 < 3 GeV/c
T

0.3 < p
| > 2η∆|

Direct Fourier Decom.
Peripheral Sub.
Template-fitting
Input Signal 2𝑁AB𝑉/∆

W@XYZcos	(𝑛∆𝜙)

Temp. fit works better
Flat v2 vs Ntrk

Limitation of subtraction methods
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Gen
trkN

0 50 100 150

∆2V

0.000

0.005

0.010  = 13 TeVspp 
PYTHIA8 TuneCUETP8M1

 < 3 GeV/c
T

0.3 < p
| > 2η∆|

Direct Fourier Decom.
Peripheral Sub.
Template-fitting
Input Signal

𝑽𝒏∆𝒔𝒖𝒃=𝑉@∆AB-𝛼 -CD

-ED
𝑉@∆FB

𝑌(∆𝜙)=F𝑌FB ∆𝜙 + G(1 + 2∑ 𝑽𝒏∆
𝒇𝒊𝒕cos	(𝑛∆𝜙)�

@ )

Peripheral subtraction:

Template fit:

Adding a v2 to 𝑌(∆𝜙): 

2𝑁AB𝑉/∆
W@XYZcos	(𝑛∆𝜙)

Peri. sub. works better
Rising v2 vs Ntrk

Limitation of subtraction methods
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Gen
trkN

0 50 100 150

∆2V
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 = 13 TeVspp 
PYTHIA8 TuneCUETP8M1

 < 3 GeV/c
T

0.3 < p
| > 2η∆|

Direct Fourier Decom.
Peripheral Sub.
Template-fitting
Input Signal

𝑽𝒏∆𝒔𝒖𝒃=𝑉@∆AB-𝛼 -CD

-ED
𝑉@∆FB

𝑌(∆𝜙)=F𝑌FB ∆𝜙 + G(1 + 2∑ 𝑽𝒏∆
𝒇𝒊𝒕cos	(𝑛∆𝜙)�

@ )

Peripheral subtraction:

Template fit:

Adding a v2 to 𝑌(∆𝜙): 

2𝑁AB𝑉/∆
W@XYZcos	(𝑛∆𝜙)

Temp. fit can be even
LARGER than unsub.!

Making input v2 larger

Limitation of subtraction methods
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𝑽𝒏∆𝒔𝒖𝒃=𝑉@∆AB-𝛼 -CD

-ED
𝑉@∆FB

𝑌(∆𝜙)=F𝑌FB ∆𝜙 + G(1 + 2∑ 𝑽𝒏∆
𝒇𝒊𝒕cos	(𝑛∆𝜙)�

@ )

Peripheral subtraction:

Template fit:

Limitation of subtraction methods
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Subtracted 𝑽𝒏∆
𝒇𝒊𝒕 > Unsubtracted 𝑽𝒏∆
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offline
trkN
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pp 13TeV
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𝑽𝒏∆𝒔𝒖𝒃=𝑉@∆AB-𝛼 -CD

-ED
𝑉@∆FB

𝑌(∆𝜙)=F𝑌FB ∆𝜙 + G(1 + 2∑ 𝑽𝒏∆
𝒇𝒊𝒕cos	(𝑛∆𝜙)�

@ )

Peripheral subtraction:

Template fit:

What’s going on?

𝑉@∆
[WZ =

𝑁AB

𝐺 𝑉@∆AB−𝐹
𝑁FB

𝐺 𝑉@∆FB

where 𝐺 = 𝑁AB − 𝐹𝑁FB

If 𝑉@∆AB	>	𝑉@∆FB 𝑽𝒏∆
𝒇𝒊𝒕	>	𝑽𝒏∆𝑳𝑴!

Conclusions:
Ø Template fit changes the baseline and defines a new vn
Ø Peri. sub.: a lower limit and unsub.: an upper limit

Limitation of subtraction methods
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CMS  = 7 TeV)s (-16.2 pb  = 5.02 TeV)NNs (-135 nb  = 2.76 TeV)NNs (-1bµ2.3 
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“Radial flow” diminishing at low Ntrk

mT scaling

Examine other signatures of collectivity at low Ntrk
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Summary

Strong evidence of novel collectivity in pp/pA/AA

A QGP fluid in pp/pA? Two aspects still to be established:
Ø Connection to initial-state geometry
Ø Direct evidence of final-state interactions (jets, heavy flavor)

Why important? impacts of a QGP fluid in small systems:
Ø Proton shape fluctuations
Ø Fundamental coupling strength of the system
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Summary

Strong evidence of novel collectivity in pp/pA/AA

A QGP fluid in pp/pA? Two aspects still to be established:
Ø Connection to initial-state geometry
Ø Direct evidence of final-state interactions (jets, heavy flavor)

Why important? impacts of a QGP fluid in small systems:
Ø Proton shape fluctuations
Ø Fundamental coupling strength of the system

To continue the exciting program at the LHC requires 
strong supports from the community as a whole
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Backups
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 (7 TeV)-1pp 6.2 pb
 (5.02 TeV)-1pPb 35 nb

 (2.76 TeV)-1bµPbPb 2.3 

CMS | < 1.0cm|y

Blast-Wave fits to K0
s, Λ and Ξ-

<βT> larger as Ntrk increases

Ntrk



Lint ~ 186 nb-1

collected in 2016

Jet quenching in small system?
multiparticle v2
at high pT


