Is a QGP fluid created in pp/pA and why it's a question of importance?

- some perspectives on the key questions

Wei Li
Rice University

Copenhagen, Denmark, May 9-11

Is there collectivity in small systems? Copenhagen interpretation @ Workshop on Collectivity in Small Collision Systems

Let's address this first!

What is collective and what is not?

Collectivity can be defined to arbitrarily low $\mathrm{N}_{\text {trk }}(\geq 2)$

What is collective and what is not?

Collectivity can be defined to arbitrarily low $\mathrm{N}_{\text {trk }}(\geq 2)$

Event 2

Event 4

but indistinguishable from "trivial" pQCD processes Not very interesting!

What is collective and what is not?

More interested in multi-particle collectivity:
"High" Multiplicity >> cluster size

Collective

Non-collective

What is collective and what is not?

More interested in multi-particle collectivity:

"High" Multiplicity >> cluster size

Collective

Non-collective

What is collective and what is not?

More interested in multi-particle collectivity:
"High" Multiplicity >> cluster size

Collective

Non-collective

What is collective and what is not?

More interested in multi-particle collectivity:

"High" Multiplicity >> cluster size

Collective

Non-collective

Cumulants designed to suppress few-body correlations
$\mathrm{v}_{2}\{2\} \approx \mathrm{v}_{2}\{4\} \approx \mathrm{v}_{2}\{6\} \approx \mathrm{v}_{2}\{8\}$
$\left(\mathrm{c}_{2}\{2\}>0, \mathrm{c}_{2}\{4\}<0, \mathrm{c}_{2}\{6\}>0, \mathrm{c}_{2}\{8\}<0\right)$

A strong evidence
for collectivity

What is collective and what is not?

More interested in multi-particle collectivity:
"High" Multiplicity >> cluster size

Collective

Non-collective

"Right" sign and mag. of $c_{2}\{m\} \rightarrow$ likely collective

What is collective and what is not?

More interested in multi-particle collectivity:

"High" Multiplicity >> cluster size

Collective

Non-collective

"Right" sign and mag. of $c_{2}\{m\} \rightarrow$ likely collective But when signal is small with large fluctuation, esp. at low multiplicity, sign of $\mathrm{c}_{2}\{\mathrm{~m}\}$ can be "wrong"

What is collective and what is not?

More interested in multi-particle collectivity:

"High" Multiplicity >> cluster size

Collective

Non-collective

"Right" sign and mag. of $c_{2}\{m\} \rightarrow$ likely collective But when signal is small with large fluctuation, esp. at low multiplicity, sign of $\mathrm{c}_{2}\{\mathrm{~m}\}$ can be "wrong"

What is collective and what is not?

More interested in multi-particle collectivity:

"High" Multiplicity >> cluster size

Collective

Non-collective

"Right" sign and mag. of $c_{2}\{m\} \rightarrow$ likely collective But when signal is small with large fluctuation, esp. at low multiplicity, sign of $\mathrm{c}_{2}\{\mathrm{~m}\}$ can be "wrong"

Collectivity seen in "HM" small systems

Evidence for collectivity in pp collisions at the LHC

 The CMS Collaboration ${ }^{\star} \quad$ Physics Letters B 765 (2017) 193-220

Multiplicity independent
Collective anisotropies at high multiplicity

Collectivity seen in "HM" small systems

Evidence for collectivity in pp collisions at the LHC The CMS Collaboration* Physics Letters B 765 (2017) 193-220

$\left\{\mathrm{V}_{2}\{4\} \approx \mathrm{v}_{2}\{6\} \approx \ldots\right.$
Multiplicity independent
Collective anisotropies at high multiplicity
very hard jets ($>10 \mathrm{GeV}$): rare
semi-hard (<a few GeV): interact and flow

Collectivity seen in "HM" small systems

More evidence of collectivity in pp ...
Mass-proportional splitting

Radial collective emission of a moving source

Is there collectivity in small systems? Copenhagen interpretation @ Workshop on Collectivity in Small Collision Systems

Ample experimental data consistent with novel collective long-range correlations in small systems

Have we created a tiny QGP fluid?

"Hydrodynamic" scenario

Initial spatial ε_{s} at $\mathrm{T}=0$
Pressure gradient
(final-state interactions)

Feasibly, and it is the accepted paradigm in AA

Have we created a tiny QGP fluid?

"Hydrodynamic" scenario

Initial spatial ε_{s} at $\mathrm{T}=0$
Pressure gradient
(final-state interactions)

Feasibly, and it is the accepted paradigm in AA

But not necessarily,
"CGC" scenario
Initial momenta ε_{p} at $\tau \leq 0$ by initial interactions

Have we created a tiny QGP fluid?

"Hydrodynamic" scenario

Initial spatial ε_{s} at $\mathrm{T}=0$
$+\quad$ Pressure gradient (final-state interactions)

But not necessarily,
"CGC" scenario
Initial momenta ε_{p} at $\tau \leq 0$ by initial interactions

Feasibly, and it is the accepted paradigm in AA

The fact that this behavior is reproduced in a simple initial state model is a proof of principle that it is not unique to interpretations of collectivity arising from the hydrodynamic response of the system to the n-th momints of m particle spatial eccentricities [44, 45]. For a

Have we created a tiny QGP fluid?

RHIC Scientists Serve Up 'Perfect' Liquid

New state of matter more remarkable than predicted - raising many new questions
Monday, April 18, 2005
TAMPA, FL - The four detector groups conducting research at the Relativistic Heavy lon Collider (RHIC) - a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory - say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a liquid.

Why we aren't debating "Hydro" vs "CGC" in AA?
What does it still take to reach a consensus on the origin of collectivity in small systems (pp/pA)?

"Perfect" fluid paradigm in AA

> Geometry $\left(\varepsilon_{s}\right)$ at work!

Centrality dependence

"Perfect" fluid paradigm in AA

> Geometry $\left(\varepsilon_{s}\right)$ at work!

"Perfect" fluid paradigm in AA

$>$ Geometry $\left(\varepsilon_{s}\right)$ at work! - even for $\mathrm{A}_{1}\left(\mathrm{~A}_{2}\right)$ down to 2

Centrality dependence

CuCu vs AuAu scaling

"Perfect" fluid paradigm in AA

$>$ Geometry $\left(\varepsilon_{\mathbf{s}}\right)$ at work! - even for $\mathrm{A}_{1}\left(\mathrm{~A}_{2}\right)$ down to 2

Centrality dependence

CuCu vs AuAu scaling
> Pressure driven
Indirectly, jet quenching \rightarrow opaque, strong rescattering

"Perfect" fluid paradigm in AA

$>$ Geometry $\left(\varepsilon_{\mathbf{s}}\right)$ at work! - even for $\mathrm{A}_{1}\left(\mathrm{~A}_{2}\right)$ down to 2

Centrality dependence

CuCu vs AuAu scaling
> Pressure driven
Indirectly, jet quenching \rightarrow opaque, strong rescattering
Both not fully established in small systems yet

Pressure driven in pp/pA?

Evidence for pressure driven

Pressure driven in pp/pA?

Evidence for pressure driven

AMPT gets v_{2} in a "dilute" limit: how about size dep. of "radial flow"?

Connection to geometry in pp/pA?

Hydro. fits the data in pA ...

$>$ Large uncertainty in modeling of IS in pp/pA
> Hard to vary in a controlled way

Connection to geometry in pp/pA?

Universal features of fluctuation-driven ε_{n}
Yan, Ollitrault, PRL 112, 082301 (2014)

Connection to geometry in pp/pA?

Universal features of fluctuation-driven ε_{n}

Yan, Ollitrault, PRL 112, 082301 (2014)

$$
P(\varepsilon)=2 \alpha \varepsilon\left(1-\varepsilon^{2}\right)^{\alpha-1}
$$

Predictions:

> Fine splitting among $\mathrm{v}_{2}\{4\}, \mathrm{v}_{2}\{6\}$ and $\mathrm{v}_{2}\{8\}$

Connection to geometry in pp/pA?

Universal features of fluctuation-driven $\varepsilon_{n} \quad$ w. Li

Yan, Ollitrault, PRL 112, 082301 (2014)

$\alpha=\frac{N_{S}}{2}-1$

$$
P(\varepsilon)=2 \alpha \varepsilon\left(1-\varepsilon^{2}\right)^{\alpha-1}
$$

Predictions:

> Fine splitting among $\mathrm{v}_{2}\{4\}, \mathrm{v}_{2}\{6\}$ and $\mathrm{v}_{2}\{8\}$

Connection to geometry in pp/pA?

Universal features of fluctuation-driven $\varepsilon_{n} \quad$ w. Li

Yan, Ollitrault, PRL 112, 082301 (2014)

$\alpha=\frac{N_{S}}{2}-1$

$$
P(\varepsilon)=2 \alpha \varepsilon\left(1-\varepsilon^{2}\right)^{\alpha-1}
$$

Predictions:

> Fine splitting among $\mathrm{v}_{2}\{4\}, \mathrm{v}_{2}\{6\}$ and $\mathrm{v}_{2}\{8\}$

$$
>\frac{v_{2}\{4\}}{v_{2}\{2\}} \approx \frac{v_{3}\{4\}}{v_{3}\{2\}}
$$

Connection to geometry in pp/pA?

Symmetric cumulants

$>$ Naturally explained by initial geometry
> A challenge to initial interaction models?

Connection to geometry in pp/pA?

Symmetric cumulants

But ... Color domains
 (arXiv:1705.00745)

$>$ Naturally explained by initial geometry
> A challenge to initial interaction models?

QGP fluid in pp/pA: why important?

1. Proton size and shape fluctuations

Mantysaari, Schenke, PRL 117, 052301 (2016)

Lots of interests
P. Bożek, W. Broniowski, M. Rybczyński, PRC94 (2016) 014902
K. Welsh, J. Singer, U.W. Heinz, PRC94 (2016) 024919
R. D. Weller and P. Romatschke arXiv:1701.07145
P. Bozek, W. Broniowski, arXiv:1701.09105
D. McGlinchey, J.L. Nagle, D.V. Perepelitsa, PRC94 (2016) 024915
pp is the ultimate test
superSONIC for $p+p, \sqrt{ } s=5.02 \mathrm{TeV}, 0-1 \%$

Smooth proton

Weller, Romatschke arXiv:1701.07145

SC(v2,v3) should be very small?

QGP fluid in pp/pA: why important?

2. Universality of strongly-coupled QCD system (AA, pA, pp, and even e+e-ep, eA)
Applicability of hydrodynamics

$$
L \gg \lambda_{\text {m.f.p. }} \quad \text { where } \lambda_{\text {m.f.p. }} \sim \frac{1}{g^{4} T}
$$

QGP fluid in pp/pA: why important?

2. Universality of strongly-coupled QCD system (AA, pA, pp, and even e+e-ep, eA)
Applicability of hydrodynamics

$$
L \gg \lambda_{\text {m.f.p. }}
$$

$$
\text { where } \lambda_{\text {m.f.p. }} \sim \frac{1}{g^{4} T}
$$

Experimental condition

$$
N_{t r k} \sim(L T)^{3}
$$

> Hydro. behavior approx. controlled by $\mathrm{N}_{\mathrm{trk}}$
> How hydro breaks down as a function of $\mathrm{N}_{\text {trk }}$ may give insights to the fundamental system coupling

QGP fluid in pp/pA: why important?

2. Universality of strongly-coupled QCD system (AA, pA, pp, and even e+e-ep, eA)
Applicability of hydrodynamics

$$
L \gg \lambda_{\text {m.f.p. }} \text { where } \lambda_{\text {m.f.p. }} \sim \frac{1}{g^{4} T}
$$

Experimental condition

$$
N_{t r k} \sim(L T)^{3}
$$

AdS/CFT, $g \rightarrow \infty$ p. Chesler

$>$ Hydro. behavior approx. controlled by $\mathrm{N}_{\text {trk }}$ QGP fluid in pp
$>$ How hydro breaks down as a function of $\mathrm{N}_{\text {trk }}$ may give insights to the fundamental system coupling

Collectivity toward low multiplicity

v_{2} decreases at low $\mathrm{N}_{\text {tr }}$ in $\mathrm{pPb}, \mathrm{PbPb}$

Collectivity toward low multiplicity

Debatable in pp

v_{2} decreases at low $\mathrm{N}_{\text {tr }}$ in $\mathrm{pPb}, \mathrm{PbPb}$

Collectivity toward low multiplicity

Debatable in pp

v_{2} decreases at low $\mathrm{N}_{\text {tr }}$ in $\mathrm{pPb}, \mathrm{PbPb}$

v_{3} decreases at low $N_{\text {tr }}$ for all systems, regardless of subtraction method

Collectivity toward Iow multiplicity

Hydro. down to $\mathrm{dN} / \mathrm{dy} \sim 2$

If hydro., $\mathbf{v}_{\mathbf{2}}$ should go down toward low $\mathrm{N}_{\text {trk }}$ (shorter lifetime, larger viscous correction, larger $\lambda_{m f p} / \mathrm{L}$ ratio)

Collectivity toward Iow multiplicity

Hydro. down to $\mathrm{dN} / \mathrm{dy} \sim 2$

If hydro., $\mathbf{v}_{\mathbf{2}}$ should go down toward low $\mathrm{N}_{\text {trk }}$ (shorter lifetime, larger viscous correction, larger $\lambda_{m f p} / L$ ratio)

Limitation of subtraction methods

Peripheral subtraction: $V_{n \Delta}^{s u b}=V_{n \Delta}^{H M}-\alpha \frac{N^{L M}}{N^{H M}} V_{n \Delta}^{L M}$
Template fit: $Y(\Delta \phi)=\mathrm{F} Y_{L M}(\Delta \phi)+\mathrm{G}\left(1+2 \sum_{n} V_{n \Delta}^{f i t} \cos (n \Delta \phi)\right)$

Apply to PYTHIA8 without v_{2}

Works equally well

Limitation of subtraction methods

Peripheral subtraction: $V_{n \Delta}^{s u b}=V_{n \Delta}^{H M}-\alpha \frac{N^{L M}}{N^{H M}} V_{n \Delta}^{L M}$
Template fit: $Y(\Delta \phi)=\mathrm{F} Y_{L M}(\Delta \phi)+\mathrm{G}\left(1+2 \sum_{n} V_{n \Delta}^{f i t} \cos (n \Delta \phi)\right)$

Adding a v_{2} to $Y(\Delta \phi)$:

$$
2 N^{H M} V_{2 \Delta}^{\text {input }} \cos (n \Delta \phi)
$$

Flat v_{2} vs $\mathrm{N}_{\text {tr }}$
Temp. fit works better

Limitation of subtraction methods

Peripheral subtraction: $V_{n \Delta}^{s u b}=V_{n \Delta}^{H M}-\alpha \frac{N^{L M}}{N^{H M}} V_{n \Delta}^{L M}$
Template fit: $Y(\Delta \phi)=\mathrm{F} Y_{L M}(\Delta \phi)+\mathrm{G}\left(1+2 \sum_{n} V_{n \Delta}^{f i t} \cos (n \Delta \phi)\right)$

Adding a v_{2} to $Y(\Delta \phi)$:
$2 N^{H M} V_{2 \Delta}^{\text {input }} \cos (n \Delta \phi)$

Rising v_{2} vs $\mathrm{N}_{\text {tr }}$
Peri. sub. works better

Limitation of subtraction methods

Peripheral subtraction: $V_{n \Delta}^{s u b}=V_{n \Delta}^{H M}-\alpha \frac{N^{L M}}{N^{H M}} V_{n \Delta}^{L M}$
Template fit: $Y(\Delta \phi)=\mathrm{F} Y_{L M}(\Delta \phi)+\mathrm{G}\left(1+2 \sum_{n} V_{n \Delta}^{f i t} \cos (n \Delta \phi)\right)$

Adding a v_{2} to $Y(\Delta \phi)$:

$$
2 N^{H M} V_{2 \Delta}^{\text {input }} \cos (n \Delta \phi)
$$

Making input v_{2} larger
Temp. fit can be even LARGER than unsub.!

Limitation of subtraction methods

Peripheral subtraction: $V_{n \Delta}^{s u b}=V_{n \Delta}^{H M}-\alpha \frac{N^{L M}}{N^{H M}} V_{n \Delta}^{L M}$
Template fit: $Y(\Delta \phi)=\mathrm{F} Y_{L M}(\Delta \phi)+\mathrm{G}\left(1+2 \sum_{n} V_{n \Delta}^{f i t} \cos (n \Delta \phi)\right)$
Subtracted $V_{n \Delta}^{f i t}>$ Unsubtracted $V_{n \Delta}$

Limitation of subtraction methods

Peripheral subtraction: $V_{n \Delta}^{s u b}=V_{n \Delta}^{H M}-\alpha \frac{N^{L M}}{N^{H M}} V_{n \Delta}^{L M}$
Template fit: $Y(\Delta \phi)=\mathrm{F} Y_{L M}(\Delta \phi)+\mathrm{G}\left(1+2 \sum_{n} V_{n \Delta}^{f i t} \cos (n \Delta \phi)\right)$
What's going on?
$V_{n \Delta}^{f i t}=\frac{N^{H M}}{G} J_{n \Delta}^{H M}-F \frac{N^{L M}}{G} V_{n \Delta}^{L M}$
where $G=N^{H M}-F N^{L M}$

If $V_{n \Delta}^{H M}>V_{n \Delta}^{L M} \Longrightarrow V_{n \Delta}^{f i t}>V_{n \Delta}^{L M}$!

Conclusions:

$>$ Template fit changes the baseline and defines a new v_{n} > Peri. sub.: a lower limit and unsub.: an upper limit

"Radial flow" diminishing at low $\mathbf{N}_{\text {trk }}$

Examine other signatures of collectivity at low $\mathrm{N}_{\text {trk }}$

Summary

Strong evidence of novel collectivity in pp/pA/AA

A QGP fluid in pp/pA? Two aspects still to be established:
> Connection to initial-state geometry
> Direct evidence of final-state interactions (jets, heavy flavor)
Why important? impacts of a QGP fluid in small systems:
> Proton shape fluctuations
> Fundamental coupling strength of the system

Summary

Strong evidence of novel collectivity in pp/pA/AA
A QGP fluid in pp/pA? Two aspects still to be established:
> Connection to initial-state geometry
$>$ Direct evidence of final-state interactions (jets, heavy flavor)
Why important? impacts of a QGP fluid in small systems:
> Proton shape fluctuations
> Fundamental coupling strength of the system
To continue the exciting program at the LHC requires strong supports from the community as a whole

Backups

Blast-Wave fits to $\mathrm{K}_{0}{ }^{\mathrm{s}}, \wedge$ and E^{-}

$<\beta_{\mathrm{T}}>$ larger as $\mathrm{N}_{\text {trk }}$ increases

Jet quenching in small system?

multiparticle v_{2} at high p_{T}
$L_{\text {int }} \sim 186 \mathrm{nb}^{-1}$ collected in 2016

