Is a QGP fluid created in pp/pA and why it's a question of importance?

- some perspectives on the key questions

Wei Li Rice University

Workshop on Collectivity in Small Collision Systems Copenhagen, Denmark, May 9 – 11

Is there collectivity in small systems? Copenhagen interpretation @ Workshop on Collectivity in Small Collision Systems

Let's address this first!

Collectivity can be defined to arbitrarily low N_{trk} (\geq 2)

Collectivity can be defined to arbitrarily low N_{trk} (\geq 2)

but indistinguishable from "trivial" pQCD processes Not very interesting!

More interested in **multi-particle** collectivity:

"High" Multiplicity >> cluster size

Non-collective

More interested in **multi-particle** collectivity:

<u>"High" Multiplicity >> cluster size</u>

Collective

Non-collective

More interested in **multi-particle** collectivity:

<u>"High" Multiplicity >> cluster size</u>

Collective

Non-collective

What is collective and what is not? More interested in **multi-particle** collectivity: <u>"High" Multiplicity >> cluster size</u> Collective Non-collective Cumulants designed to suppress few-body correlations $v_{2}{2} \approx v_{2}{4} \approx v_{2}{6} \approx v_{2}{8}$ A strong evidence $(c_{2}>0, c_{4}<0, c_{4}<0, c_{4}<0)$ for collectivity

What is collective and what is not? More interested in multi-particle collectivity: "High" Multiplicity >> cluster size Collective Non-collective

"Right" sign and mag. of $c_2\{m\} \rightarrow likely collective$

What is collective and what is not? More interested in **multi-particle** collectivity: <u>"High" Multiplicity >> cluster size</u> Collective **Non-collective**

"Right" sign and mag. of $c_2\{m\} \rightarrow likely collective$

But when signal is small with large fluctuation, esp. at low multiplicity, sign of $c_2\{m\}$ can be "wrong"

More interested in **multi-particle** collectivity:

<u>"High" Multiplicity >> cluster size</u>

Collective

Non-collective

"Right" sign and mag. of $c_2\{m\} \rightarrow likely collective$

But when signal is small with large fluctuation, esp. at low multiplicity, sign of $c_2\{m\}$ can be "wrong"

What is collective and what is not? More interested in **multi-particle** collectivity: <u>"High" Multiplicity >> cluster size</u> Collective **Non-collective**

"Right" sign and mag. of $c_2\{m\} \rightarrow likely collective$

But when signal is small with large fluctuation, esp. at low multiplicity, sign of $c_2\{m\}$ can be "wrong"

Collectivity seen in "HM" small systems

Collectivity seen in "HM" small systems

very hard jets (>10 GeV): rare semi-hard (< a few GeV): interact and flow

Collectivity seen in "HM" small systems

More evidence of collectivity in pp ...

Mass-proportional splitting Radial collective emission of a moving source

Is there collectivity in small systems? Copenhagen interpretation @ Workshop on Collectivity in Small Collision Systems

Ample experimental data consistent with novel collective long-range correlations in small systems

"Hydrodynamic" scenario

Initial spatial ε_s at $\tau=0$

Pressure gradient (final-state interactions)

╋

Feasibly, and it is the accepted paradigm in AA

"Hydrodynamic" scenario

Initial spatial ε_s at $\tau=0$

Pressure gradient (final-state interactions) Feasibly, and it is the accepted paradigm in AA

But not necessarily,

"CGC" scenario

Initial momenta ε_p at $\tau \le 0$ by **initial** interactions

"Hydrodynamic" scenario

Initial spatial ε_s at $\tau=0$

+ Pressure gradient (final-state interactions)

Feasibly, and it is the accepted paradigm in AA

"CGC" scenario

Initial momenta ε_p at $\tau \le 0$ by **initial** interactions

The fact that this behavior is reproduced in a simple initial state model is a proof of principle that it is not unique to interpretations of collectivity arising from the hydrodynamic response of the system to the n-th moments of m particle spatial eccentricities [44, 45]. For a

RHIC Scientists Serve Up 'Perfect' Liquid

New state of matter more remarkable than predicted — raising many new questions

Monday, April 18, 2005

TAMPA, FL — The four detector groups conducting research at the <u>Relativistic Heavy Ion Collider</u> (RHIC) — a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory — say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In <u>peer-reviewed papers</u> summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a *liquid*.

Why we aren't debating "Hydro" vs "CGC" in AA?

What does it still take to reach a consensus on the origin of collectivity in small systems (pp/pA)?

> Geometry (ε_s) at work! — even for $A_1(A_2)$ down to 2

> Geometry (ε_s) at work! — even for $A_1(A_2)$ down to 2

Pressure driven

Indirectly, jet quenching \rightarrow opaque, strong rescattering

> Geometry (ε_s) at work! — even for $A_1(A_2)$ down to 2

Pressure driven

Indirectly, jet quenching \rightarrow opaque, strong rescattering

Both not fully established in small systems yet

Pressure driven in pp/pA?

Pressure driven in pp/pA?

AMPT gets v_2 in a "dilute" limit: how about size dep. of "radial flow"?

Hydro. fits the data in pA ...

- Large uncertainty in modeling of IS in pp/pA
- Hard to vary in a controlled way

Universal features of fluctuation-driven ε_n

Yan, Ollitrault, PRL 112, 082301 (2014)

Universal features of fluctuation-driven ε_n

Yan, Ollitrault, PRL 112, 082301 (2014)

Predictions:

Fine splitting among v₂{4}, v₂{6} and v₂{8}

Universal features of fluctuation-driven ε_n W. Li

LPC, 9/5/16

Yan, Ollitrault, PRL 112, 082301 (2014)

Predictions:

Fine splitting among v₂{4}, v₂{6} and v₂{8}

Universal features of fluctuation-driven ε_n W. Li

LPC, 9/5/16

Yan, Ollitrault, PRL 112, 082301 (2014)

Predictions:

Fine splitting among v₂{4}, v₂{6} and v₂{8}

$$\succ \frac{v_2\{4\}}{v_2\{2\}} \approx \frac{v_3\{4\}}{v_3\{2\}}$$

Symmetric cumulants

- Naturally explained by initial geometry
- > A challenge to initial interaction models?

- Naturally explained by initial geometry
- > A challenge to initial interaction models?

1. Proton size and shape fluctuations

Mantysaari, Schenke, PRL 117, 052301 (2016)

Lots of interests

P. Bożek, W. Broniowski, M. Rybczyński, PRC94 (2016) 014902

- K. Welsh, J. Singer, U.W. Heinz, PRC94 (2016) 024919
- R. D. Weller and P. Romatschke arXiv:1701.07145
- P. Bozek, W. Broniowski, arXiv:1701.09105
- D. McGlinchey, J.L. Nagle, D.V. Perepelitsa, PRC94 (2016) 024915

pp is the ultimate test

superSONIC for p+p, \sqrt{s} =5.02 TeV, 0-1%

Smooth proton

Weller, Romatschke arXiv:1701.07145

SC(v2,v3) should be very small?

2. Universality of strongly-coupled QCD system (AA, pA, pp, and even e^+e^- , ep, eA)

Applicability of hydrodynamics

$$L >> \lambda_{m.f.p.}$$

where $\lambda_{m.f.p.} \sim \frac{1}{g^4 T}$

2. Universality of strongly-coupled QCD system (AA, pA, pp, and even e^+e^- , ep, eA)

Applicability of hydrodynamics

$$L >> \lambda_{m.f.p.}$$

where
$$\lambda_{m.f.p.} \sim \frac{1}{g^4 T}$$

Experimental condition

$$N_{trk} \sim \left(LT\right)^3$$

- ➢ Hydro. behavior approx. controlled by N_{trk}
- How hydro breaks down as a function of N_{trk} may give insights to the fundamental system coupling

2. Universality of strongly-coupled QCD system (AA, pA, pp, and even e^+e^- , ep, eA)

Applicability of hydrodynamics

$$L >> \lambda_{m.f.p.}$$

where
$$\lambda_{m.f.p.} \sim \frac{1}{g^4 T}$$

Experimental condition

$$N_{trk} \sim \left(LT\right)^3$$

AdS/CFT,
$$g \rightarrow \infty$$
 P. Chesler

QGP fluid in pp

- Hydro. behavior approx. controlled by N_{trk}
- How hydro breaks down as a function of N_{trk} may give insights to the fundamental system coupling

Hydro. down to $dN/dy \sim 2$

If hydro., v_2 should go down toward low N_{trk} (shorter lifetime, larger viscous correction, larger λ_{mfp} /L ratio)

Hydro. down to $dN/dy \sim 2$

If hydro., v_2 should go down toward low N_{trk} (shorter lifetime, larger viscous correction, larger λ_{mfp} /L ratio)

Peripheral subtraction: $V_{n\Delta}^{sub} = V_{n\Delta}^{HM} - \alpha \frac{N^{LM}}{N^{HM}} V_{n\Delta}^{LM}$

Peripheral subtraction: $V_{n\Delta}^{sub} = V_{n\Delta}^{HM} - \alpha \frac{N^{LM}}{N^{HM}} V_{n\Delta}^{LM}$

Peripheral subtraction: $V_{n\Delta}^{sub} = V_{n\Delta}^{HM} - \alpha \frac{N^{LM}}{N^{HM}} V_{n\Delta}^{LM}$

Peripheral subtraction: $V_{n\Delta}^{sub} = V_{n\Delta}^{HM} - \alpha \frac{N^{LM}}{N^{HM}} V_{n\Delta}^{LM}$

Peripheral subtraction: $V_{n\Delta}^{sub} = V_{n\Delta}^{HM} - \alpha \frac{N^{LM}}{N^{HM}} V_{n\Delta}^{LM}$

Template fit: $Y(\Delta \phi) = FY_{LM}(\Delta \phi) + G(1 + 2\sum_{n} V_{n\Delta}^{fit} \cos(n\Delta \phi))$

Subtracted $V_{n\Delta}^{fit}$ > Unsubtracted $V_{n\Delta}$

Peripheral subtraction: $V_{n\Delta}^{sub} = V_{n\Delta}^{HM} - \alpha \frac{N^{LM}}{N^{HM}} V_{n\Delta}^{LM}$

Template fit: $Y(\Delta \phi) = FY_{LM}(\Delta \phi) + G(1 + 2\sum_{n} V_{n\Delta}^{fit} \cos(n\Delta \phi))$

Conclusions:

- \succ Template fit changes the baseline and defines a new v_n
- Peri. sub.: a lower limit and unsub.: an upper limit

"Radial flow" diminishing at low N_{trk}

Examine other signatures of collectivity at low N_{trk}

Summary

Strong evidence of novel collectivity in pp/pA/AA

A QGP fluid in pp/pA? Two aspects still to be established:

- Connection to initial-state geometry
- Direct evidence of final-state interactions (jets, heavy flavor)

Why important? impacts of a QGP fluid in small systems:

- Proton shape fluctuations
- Fundamental coupling strength of the system

Summary

Strong evidence of novel collectivity in pp/pA/AA

A QGP fluid in pp/pA? Two aspects still to be established:

- Connection to initial-state geometry
- Direct evidence of final-state interactions (jets, heavy flavor)

Why important? impacts of a QGP fluid in small systems:

- Proton shape fluctuations
- Fundamental coupling strength of the system

To continue the exciting program at the LHC requires strong supports from the community as a whole

Blast-Wave fits to K_0^{s} , Λ and Ξ^{-}

