Collective effects in small systems from geometry and energy scan at RHIC

Julia Velkovska

VANDERBILT UNIVERSITY

Two experimental handles on collectivity in small systems

Geometry Engineering

Beam Energy Scan

Two experimental handles on collectivity in small systems

Geometry Engineering

Beam Energy Scan

Test if the initial geometry is translated to final-state momentum anisotropy

vary the duration of each stage to assess their relative importance

High-multiplicity triggered event samples

collision system (200 GeV)	increase in central events
p+Au PRC 95 (2017) 034910	x40
d+Au preliminary	x15
³ He+Au PRL115, 142301 (2015)	x10

2016 d+Au √s _{NN} (GeV)	Number of Central Events Recorded
20	15 Million
39	137 Million
62.4	131 Million
200	636 Million

Experimental methods in PHENIX

Event plane: determined at large backward pseudorapidity Particles: tracked over a large pseudorapidity range

$$dN/d\phi = 1 + \sum 2v_n \cos(n(\phi - \Psi_n))$$

2-particle correlations comprised of:

- 1) particle at midrapidity
- 2) energy cluster in BBC
- 3) tracks in FVTX

 $\left\langle e^{in(\varphi_1-\varphi_2)} \right\rangle$

Calculation of cumulants

$$\begin{array}{lll} c_n\{2\} & = & \langle \langle 2 \rangle \rangle \\ c_n\{4\} & = & \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2 \end{array}$$

Determination of harmonic coefficients

$$v_n\{2\} = \sqrt{c_n\{2\}}$$

 $v_n\{4\} = \sqrt[4]{-c_n\{4\}}$

EP: Measurements of $v_n(p_T)$ at mid rapidity

2-particle correlations

- various detector combinations are used
- 2-particle correlations used for:
 - estimate nonflow (in conjunction with min bias pp data)
 - look for the ridge
 - in some cases -> to confirm the EP measurements

Cumulants: measure integrated v_2 from tracks in FVTX as a function of N_{trk}

- FVTX: forward vertex detector —silicon strip technology
- Very precise vertex/DCA determination
- No momentum determination, *p*_T dependent efficiency — measured v₂ roughly 18% higher than true

v_2 vs η : analysis method

- We want to measure integrated v_2 ($0 < p_T < \infty$)
- No p_T information available from FVTX
- Devise a correction based on AMPT

- 1. Ridge in different systems
- 2. Geometry scan: flow of inclusive and identified particles
- 3. Energy scan with dAu

Ridge (d/³He+Au), and no clear ridge pA

A clear ridge is seen with all detector combinations, even for $\Delta \eta > 6.2$

- 1. Ridge in different systems at 200 GeV
 - Pronounced ridge in d/³He+Au, but not in pAI
 - In d+Au, the ridge extends over $\Delta \eta > 6.2$
- 2. Geometry scan: flow harmonics of inclusive and identified particles

3. Energy scan with dAu

Charged hadron v_2 : d/³He+Au

- $v_2(^{3}HeAu) \sim v_2(dAu)$
- $\epsilon_2(^{3}\text{HeAu}) = 0.50, \epsilon_2(dAu) = 0.54$

Charged hadron v₂: p+Au, p+Al

- $v_2(pAu) \sim v_2(pAl)$
- $\epsilon_2(pAu) = 0.23, \epsilon_2(pAl) = 0.30$

Nonflow estimation based on pp data

- Correlations in pp minbias data scaled by multiplicity
- Not subtracted cited as a systematic uncertainty

Charged hadron v_2 : systems group by ε

- $v_2(^{3}HeAu) \sim v_2(dAu) > v_2(pAu) \sim v_2(pAl)$
- Geometry control works!

Geometry engineering, v_2 (p_T), and models

- Hydrodynamics with small η /s works!
- AMPT: weakly coupled partonic cascade+quark coallescence+hadronic cascade also works at low p_T.
- Other obesrvables ?

v_2/ϵ_2 in systems with different geometry

The v_2/ϵ_2 in p+Au is higher than that of d+Au and ³He+Au collisions

³He/d+Au – some events hot spots never connect and so $\varepsilon_2 \rightarrow v_2$ translation incomplete

This behavior is within the expectation of SONIC model, which includes Glauber initial geometry and viscous hydro evolution.

Triangular flow at 200 GeV in different systems: insights about the role of preflow

Triangular flow at 200 GeV in different systems: insights about the role of preflow

Include pre-equilibrium flow

Identified particle v₂ in different systems

Identified particle v₂ in different systems

- Mass-ordering in all three systems
- Less pronounced in p+Au than in d+Au and ³He+Au
- Need to compare to models

RESULTS

1. Ridge in different systems at 200 GeV

- Pronounced ridge in d/³He+Au, but not in pAI
- In d+Au, the ridge extends over $\Delta \eta > 6.2$
- 2. Geometry scan: flow of inclusive and identified particles
 - $v_2(p_T)$ and $v_3(p_T)$ follow initial geometry
 - hydro and AMPT describe the data up to $p_T \sim 3 \text{ or } 1 \text{ GeV}$
 - v₃ in dAu and ³HeAu discriminate against preflow/flow
 - identified particle v₂(p_T) shows mass ordering → data/theory comparisons needed
- 3. Energy scan with dAu
 - $v_2(p_T)$ at midrapidity
 - v₂(η)
 - v_2 {2} and v_2 {4} vs multiplicity

PHᢤENIX

dAu BES: Event plane measurements of v₂

dAu BES: $v_2(p_T)$ and hydro models

Nonflow correlations: insights from AMPT

- Evidence for collective effects down to 39 GeV
- Nonflow correlations at 20 GeV require further studies

Nonflow correlations: insights from AMPT

200 GeV

62 GeV

39 GeV

20 GeV

$v_2 vs \eta$

Insights from AMPT

Insights from AMPT

Insights from AMPT

v₂{2}: 2 particle correlation

v₂{2}: 2 particle correlation v₂{4}: 4 particle correlation

the difference can be attributed to nonflow + fluctuations

Real v2{4} at all 4 energies! Evidence of collectivity down to 19.6 GeV

Interesting correlation at low multiplicities needs to be understood further !

RESULTS AND CONCLUSIONS

1. Ridge in different systems at 200 GeV

- Pronounced ridge in d/³He+Au, but not in pAI
- In d+Au, the ridge seen for $\Delta \eta > 6.2$ -> truly long-range
- 2. Geometry scan: flow of inclusive and identified particles
 - $v_2(p_T)$ and $v_3(p_T)$ follow initial geometry
 - hydro and AMPT describe the data up to $p_T \sim 3$ or 1 GeV
 - v₃ in dAu and ³HeAu discriminate against preflow/flow
 - identified particle v₂(p_T) shows mass ordering → data/theory comparisons needed
- 3. Energy scan with dAu
 - $v_2(p_T)$ at midrapidity nonzero v_2 at all energies
 - v₂(η) flow dominated at forward η; additional correlations at backward η

• v_2 {2} and v_2 {4} vs multiplicity: evidence for collectivity $\overrightarrow{PH \# ENIX}$

\mathbf{Sys}	200	62.4	39
Double interactions	+9.4%	< 1%	< 1%
Event Plane	4.5%	4.5%	4.5%
East vs West	1.6%	3.6%	5.9%
PC3 Match	1%	1%	1%
$\phi { m shift}$	1%	1%	$10\% \ p_T < 1 \ \text{and} \ 5\% \ p_T > 1$
Total	$^{+10.6\%}_{-4.9\%}$	$\pm 5.8\%$	$\pm 7.5\%$

Table 6: Summary of the systematic uncertainties on the v_2 vs p_T measurements at 200, 62.4, and 39 GeV.

Table 8: A summary of the systematic uncertainties applied to the measurement of v_2 vs η in 200, 62.4, and 39 GeV d+Au collisions.

Sys	Type	200	62	39
Double Interactions	В	+2%	< 1%	< 1%
Event Plane	В	4.8%	4.8%	4.8%
Fake Tracks	В	3.3%	3.3%	3.3%
$\rm E~vs~W$	В	1.6%	3.6%	5.9%
AMPT correction	В	$\sim 0-3\%$	$\sim 0-3\%$	$\sim 0-3\%$
Total (approx.)	В	$^{+8\%}_{-7\%}$	$\pm 8\%$	$\pm 9\%$

v_2 vs η : analysis method

PH^{*}ENIX

Ron Belmont QM17

Components and cumulants in p+Au and d+Au at 200 GeV

Real v₂{4} in d+Au, imaginary v₂{4} in p+Au
Fluctuations could dominate in the p+Au (v₂{4} = √v₂² - σ²)

