3–7 Jul 2023
Niels Bohr Institute
Europe/Copenhagen timezone

Asymptotic gravitational-wave fluxes from a spinning test body on generic orbits around a Kerr black hole

7 Jul 2023, 11:20
20m
Chr. Hansen Auditorium (Niels Bohr Institute)

Chr. Hansen Auditorium

Niels Bohr Institute

Øster Farimagsgade 5

Speaker

Viktor Skoupý (Astronomical Institute of the Czech Academy of Sciences; Charles University)

Description

This work provides gravitational wave energy and angular momentum asymptotic fluxes from a spinning body moving on generic orbits in a Kerr spacetime up to linear in spin approximation. To achieve this, we have developed a new frequency domain Teukolsky equation solver that calculates asymptotic amplitudes from generic orbits of spinning bodies with their spin aligned with the total orbital angular momentum. However, the energy and angular momentum fluxes from these orbits in the linear in spin approximation are appropriate for adiabatic models of extreme mass ratio inspirals even for spins non-aligned to the orbital angular momentum. To check the newly obtained fluxes, they were compared with already known frequency domain results for equatorial orbits and with results from a time domain Teukolsky equation solver called Teukode for off-equatorial orbits. The spinning body framework of our work is based on the Mathisson-Papapetrou-Dixon equations under the Tulczyjew-Dixon spin supplementary condition.

Presentation materials